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5. Oscillation

5.1 Theory

5.2 Simulation

5.3 Experiment Analysis

5.4 Experiment: Free Oscillation
5.5 Experiment: Damped Oscillation

5.6 Experiment: Forced Vibration
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o.1.

Theory

Harmonic oscillation is basically dealt with in various fields — not only in classical
mechanics but also in quantum mechanics, acoustics, thermodynamics, electromagnetic
and so on. Mechanical oscillation represents the repetition of motion and electric
oscillation represents the change of voltage and electric current. Harmonic oscillation is
important because in case of small oscillations in the system equilibrium, the solution’
can be sought perfectly and analyzed, and although the potential is not consistent
generally, it can be dealt with as harmonic oscillation near the minimum within the
potential well. Classically, it cannot pass through the wall of the well, so the oscillation
occurs within the potential, and you can check this out by simulations or experiments.

In a physical situation, one-dimensional potential is the base for explaining
harmonic oscillations. Let’s understand the one-dimensional potential of harmonic
oscillation theoretically by representing it with the system of mass and spring, and

examine it with simulations and actual experiments.

! In classical mechanics, when Hamiltonian is equal to the total energy of a system,
general solutions of location or velocity can be attained by Hamilton’s equation of
motion according to the flow of time.
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Picture 5.1.1 Harmonic oscillation of the system of mass—spring23 Oscillation

experiment composed of a cart and a spring

5.1.1. Free Oscillation and Damped Oscillation
Plat) = Sk’

When the mass M moves within the potential well V(X,t) and the resistance of the

system is small, Lagrangian can be shown like below.
Llapt) = T— V= 2mi’ — Vie.t) (5.1.1)

And the general form of Lagrange equation of motion represented by generalized

coordinate and velocity is as follows.

dor_or
dt gy Az

% Various experiment designs are possible according to how to compose the mass and
the spring, and the equation of motion can be set up complying with each composition.
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If you substitute formula (5.1.1) and solve this, the result will be like below.

aL o lI—V]| 8 |1.”_'|__.”
dx dzx 3z | 2| L
dr N d (1 2 .
P T =-—|75m& [T mr
oo o gda'=

Formula (5.1.2) shows Newton’s equation of motion is applicable. This explains that
potential energy is not the function of time but the most general equation of motion of

one—dimensional motion®.

Formula (5.1.2) can be rewritten when Wg =—.
m

(=]
—
[

In Hamilton’s equation, the momentum is like below.

oL -
p=——=mz
[
So, the energy is as follows.
H=T+V= +mi' + ks
— l||.£.:_;l,\"
T 2im 2™

3 A form of motion whose degree of freedom is 1
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Change Hamiltonian H to E, divide both sides with E and rewrite the formula in
the form of the equation of ellipse. Then it will be changed into the formula about

generalized coordinate X and the phase-space of momentum P below.

a’ @ _ & v (5.1.4)
5EE T 3E/m 3EE T ImE L

In formula (5.1.4), the amplitudes of axes will be 1/2E/k (in case of X ) and

vemE (n case of p). If you multiply the radiuses of the ellipse’s long axis and short

axis, the result is like below.

[ [E_pf 1|
a, 1|’. m 15. i .. V.}?TE )

This represents that the energy level is widened in a regular interval when the area
of the ellipse is quantized classically. More specified information will be stated in
Quantum Mechanics. If the phase—space of X and Xis expressed by the simulation in

Excel, the result will be same as picture 5.1.2.
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19|13 |% = (m) 0.52368
20 WOttt Fol v (m)  0,22389 ™ oot
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Picture 5.1.2 Phase-space of X and X expressed by the simulation in Excel: the

motion of ACOSajt is when the attenuation constant #=0.



215

Until now, the equations of motion have been solved on the assumption that the
experiment is done in vacuum where the resistance of medium does not exist. In fact, in
case of motion, the medium resists to disturb the motion of an object. The motion of an
object gets damped and after a while it stops. When there is no outer force and the
frictional force of a system composed of mass and a spring is —bX, the equation of

motion is as follows.

ma+ b+ ke = 5.1.0)

Like this, A& %x} WA 2 becomes secondary differential equation that has a

constant as a coefficient. And the general solution of it should be calculated by

b k

exponential function. If we rewrite the formula (5.1.5) Whenﬂzz—,a)o =.|—, the
m m

result is as follows.

By
|
[}
Ciy
:
|
I3
Lo )
3]
I
=
(=31
=
(3]

There is a solution in the form of X = Ae** . Substitute X = Ae*” to formula (5.1.5),

and the result will be like below.

In formula (5.1.7) three general cases below can be considered.
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(a) a)g —,BZ > 0: Minute damped oscillation

(b) w§ —,32 =0: Critical damped oscillation

(c) a)g —ﬂz <0: Excessive damped oscillation
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Picture 5.1.3 Damped motion expressed by the simulation in Excel: In the simulation,
if the mass is 0.4 kg and modulus of elasticity is 6.647, the attenuation constant of

the critical damped motion b=3.26116.

(a) In case of W, = £, when a)l2 = a>§ —ﬂz, formula (5.1.7) can be changed.

r=e " ’c-_-s e

And this formula can be completed as follows.

a=Ae “cos(wt+4) (5,1.8)
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In case of motion according to formula (5.1.8), it takes the form of a subtle
underdamped harmonic motion as time goes by. In this case, this envelope motion is the

amplitude of this equation of motion which is represented as a COS function.

£y =Ae” (6.1.9)

In case of motion (a), it can be checked out by simulations and experiments in Excel.
In case of MW, =4, b=2VmK and a critically damped motion occurs. The

general solution of it is as follows.

r=4,+ At (8.1.10)

In case of (c)w, < 0, the frictional resistance is so big that an overdamped motion

occurs. If@? = ﬁz —a)g, the general solution is like below. In this case, @ is not the

angular velocity representing a real periodic motion but the constant about exponential

damping.
o=e Pt A% + A0 ] (5.1.11)

If the location and velocity is calculated as the general solutions of the equation of
motion, you can understand the mechanical energy which is the sum of a system’s

energy and the ratio of energy decrease per hour(dE/dt). dE/dt is as follows.

=—0

By e

Picture 5.1.4 is the graph representing a system’s mechanical energy and the ratio

of energy decrease per hour.
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Picture 5.1.4 Mechanical energy and the ratio of energy decrease per hour

With reference to the explanation about the damped motion, try to solve formula
(5.1.7) in case of (b) and (c). In 5.1.2, forced vibration is explained. 5.2 includes the
process of calculating the physical value about motions of systems (amplitude,
oscillation frequency, velocity, energy and so on) in a damped oscillation. It is done by
simulations using Excel. The simulation is a process in which the physical concepts and
knowledge are solved by computer simulation®. Through the process of simulations, the
concepts which were difficult to understand can be understood well. This simulation

processes can be conducted optionally before the experiment.

* Simulation is a mathematical solving process of physical theories and there is
professional software which can conduct simulations. However, this book indicates that
conducting simulations is easily possible in Excel.
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5.1.2. Forced Vibration

Picture5.1.5 Forced vibration experiment of a cart in a damped motion: (a)

mechanical waver driver’ (b) cart (Forced harmonic oscillator: FHO)

Let’s find out about forced harmonic motion, in which the FHO oscillates by getting
a periodical force such as a sinusoidal force from outside. The equation of motion of it

is as follows.

ma+ kx + br= Fycoswt (5.1.12)

Just like the right term of formula (5.1.12), the forced vibration frequency is
prominent when it reaches near the natural oscillation frequency of the harmonic
oscillator. In contrast to the damped motion, the amplitude of the oscillator increases

enormously in this oscillation, and this is called resonance.

® Mechanical waver driver oscillates by receiving signals of Sin function from the
function generator.
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Picture 5.1.6 Forced vibration of a system which oscillates near resonance: The

amplitude reaches at the maximum.®

When FHO gets a periodical force which is dependent on time, it passes the
transient state and oscillates in the steady-state. For a short time, this transient
oscillation and forced vibration are superposed in a linear form. The state of forced
vibration has two states like this, and the steady-state is dependent on time, so solve it
by calculating the solution of the in homogeneous equation. Formula (5.1.12) is the real
part of forced vibration motion. The general solution of the equation of motion about

FHO which includes the two states is like below.

x=Ape” ooz (wt+¢p)+ A cos (wt+ o) (2.1.13)

The first term of formula (5.1.13) disappears as time goes by and the second term

which is the real part of e’ remains only, which is the solution of the steady-state.

Calculate the amplitude A(®) using this solution.

% If the amplitude increases immensely, the system can be broken and in the mechanic
system, this situation is needed or not according to the circumstances.



221

Express X as the complex exponential function.

r= Ae'tE? (5.1.14)

Substitute this to formula (5.1.13) and divide both sides with e'*.

— A ihed k4 = F:E_—f.-.
(5.1.15)
= Fyleosg—izing)

Divide the real part and the imaginary part in formula (5.1.15).

Alk—mw®) = Fyeosg
(5.1.18)

[w]]

—bwd = Faing

Square both sides of formula (5.1.16) and add.

= (Fycos¢)* + (— Fgine)’

Substitute @f =k/m , f=b/2m and calculate the amplitude A(@) about the

oscillation frequency (@) of forced vibration.

o Fylm _
Alw)=—= — — 6.1.17)
W lwy—w™ ) +45w”

Take tan¢ from formula (5.1.16) and calculate phase ¢ .

(5,1.18)

Let’s consider formula (5.1.17) and (5.1.18) in following ways.
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(a) If o{{w, and @ is so small (= 0) that the phase ¢ reaches near O, then the
amplitude A= Aj(@w=0) is as follows.

B F
.1: = 2 = ._“
mwy  F (5.1,19)
e F: = #.'_'_I.D

This shows that if the oscillation frequency is small, just like in the free oscillation,

it becomes the amplitude A, whenF; force is operated,

(b) If w))w, and @ is big, the denominator of formula (5.1.17) becomes like

this: \/(a)g —0°)? +4°w° =~ w*. Therefore the amplitude A is like below.

In this formula, the phase ¢ reaches near & the amplitude decreases as much as

the oscillation frequency increases. Eventually it becomes]/a)2 .

(c) This is about @ = @,. If the damping becomes O so it becomes like w = @, ,
then wy = @wy £ @, . The phase passes ]/271 at @, . However, experimentally7, the
damping cannot be O so the resonance frequency is definitely not equal to @, . In formula
(5.1.17), when the amplitude A becomes the maximum at a certain moment, the

resonance frequency g is as follows.

=
=
I
=
3
|
I
i
I
E
=
|
Cia
]
EJI
=
[
=

If the damping is really weak, in formula (5.1.17) when the damping constant is very

small, the maximum amplitude near resonance becomes as follows.

" When doing the forced vibration experiment, analyze @,, @p in case of the damped

motion and examine the amplitude in the circumstance of forced vibration N =@/, .
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£y

=2 (5.1.22)
Q.L-'m-u.:u

Az

In formula (5.1.22), the resonance becomes the maximum as the damping gets
smaller and reaches 0. If you divide formula (5.1.19) with formula (5.1.22), you can

calculate the Q constant.

Q= —
Ay Fylmuw’
(8.1.23)
Wy
N
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Picture 5.1.7 The graph of the amplitude A(®) and the oscillation frequency

n=ow/w,"*

® This graph is drawn in Excel using formula (5.1.17). You can find out the factors
affecting the forced vibration by changing the force Fy mass m, the attenuation constant
£ and making various graphs.
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Picture 5.1.7 is a graph drawn from using formula (5.1.17) and changing the
attenuation constant f#. When the damping is small and the resonance occurs in the
steady-state, the displacement, velocity and force can be calculated like below by

solving the real part of X = Ag'“=9)

Lg= ."]..]E :.ﬂ.-.'.f.jf

(=3}
—
[
!

Lp= .:E.j.".l gtos .'J.jf L

F'= Fyrozwqt

In formula (5.1.24), Fy can be calculated as Fy =K[Ay, ,/2] by estimating the

amplitude Ay, , from the mechanical wave driver. At this time, the natural

angular frequency @, is calculated as k/m (m is the mass of a cart and k is the

modulus of elasticity). If the damping resistance is small, it is almost the same as
the wvalue of damped oscillation 9, so you can get the resonant oscillation
experimentally near this value. Also, the result can be set up as the condition and
the target value for finding solutions in physical modeling, so it can create the
mathematical prediction model for oscillations. Set up the physical model of the
oscillation motion according to the data analysis based upon the physical modeling,
and predict the experimental circumstances. Also, research the character of

oscillation motion by solution finding and curve fitting.

Y This is the free running state which only has the damped oscillation.



225

D.2.

Simulation

Oscillation motion modeling consisted of mass—spring can be realized as simulations
by using the general solution of linear homogeneous equation of motion or by solving it
with linear secondary ODE(ordinary differential equation). If the results of
mathematical solution represent that improper model has been chosen, then there will
be difficulties of representing physical states which are different with the real
experiment results. When learning physics, this situation can be challenges for the
students. Therefore, the experiments should be designed delicately and the results
should be compared carefullylo.

The simple and general way to realize the one dimensional harmonic oscillation by
simulations in Excel is to get the mathematical formula concerning basic physical
quantities such as location, velocity and so on. This can be done by using the general
solution of the equation of motion. On the other hand, the location and velocity of the
mass can be calculated by ODE. If the location and velocity is calculated, other physical

quantities concerning the motion of a system can be calculated, too.

19 Simulation is an effective tool for understanding the concepts of physics, but in this
book, it can be omitted according to the circumstances.
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5.2.1. General Solution Solving Process

The way of using the general solution is to calculate the location and velocity with
the function of time. In case of formula (5.1.7), which is the equation of motion

concerning a system with mass—spring, let’s calculate the displacement X and velocity

X when (@) @? —B° >0, Wi -p* =0, a - B°<0.

(a) When a)g —ﬂz > 0, if the velocity X is calculated by setting the initial condition

0 =0 in formula (5.1.8), the result is as follows.

r=—Age °

*cosw t — Aw,e” Feinw,t

Substitute X of formula (5.1.8).

o
=]
[
._.
-
o
[N
—

(b) When a)g —ﬂz =0, if the velocity X is calculated by setting the initial condition

t, =0,Xx(t,) = A X(t,) =0 in formula (5.1.10), the result is like below.

f f ] — Gt
.I".'f.:, = I._'.I.-_ + .1.::: :l'.J !
A=1(4,+0)e""

A, =A

Substitute Ay = A for formula (5.1.10) and differentiate it.
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If A =AA, =pA is substituted for formula (5.1.10), the result is as follows.

r=(4,=At)e™ ™

=4+ GAdtle— Gt

Gt

nr=I1+8t)Ae” ¥ !

(= )]
[R]
[\

The result of differentiating formula (5.2.2) is like below.

II

i
ot

M
Bz
G
[~J
(s ]

(c) When a)g —ﬂz < 0, if the velocity X is calculated by setting the initial condition

t, =0,Xx(t,) = A X(t,) =0 in formula (5.1.11), the result is like below.

e — 8§ wk — wh
wltyl=e "[;‘115 ' dqe "]

A =E_j"3[:'lls” $0 —d:e_”'ﬂ]

S .1..3 =4— 4,

The result of differentiating formula (5.1.11) and substituting the initial condition is
as follows.

e

r= J.E:[.".IIE"? — :_:[—‘—'11_:.5_"?]5_-'- — Ar
0=w[A;e—(4—4,)e e " 54
=w[d, —A+4,]-54

=w[24,-4]-B4
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Solve the formula above by A, .

A= u;['l:l._ — A4l = 2wA, —wA

Qpd;=04d+uwd=1F+uwld

[+ w
A= | o II:'l

+ @
p )A is substituted for formula (5.1.11), the result is

So, if A, =A-A A =(
20

as follows.

—_ 34 J 1 5 | -d+ ol i — A4
r=e ”'I:” Al +{4-2"24le 3‘].
I_. 2ie) | 1 2 f |
Calculate the velocity X by differentiating formula (5.2.2).
= ol e = [4A— =4 e
e — g
—al FFw . 4wl _
r= Awe ” .JE lylpi_.]'_d-'\ |9 “-I
“ = (2.2.8)
— G

Formula 5.2.1, 5.2.2, 5.2.3, 5.2.4, 5.2.5, which is about the displacement X and
velocity X can be used during the simulations. The results calculated by these formulae
can be compared within the error range caused by the uncertainty of the estimation and
can be used to analyze and predict the results of experiments done by the physical

models.
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Exercise 5.2.1: The Location and Velocity of Spring Pendulum

Calculate the general solution of spring pendulums like picture 5.2.1 and express in

formulae in case ofa)g—ﬂz >0, 605—,32 =0, co§ —ﬁz <0.

k,

),'o P

i Py,
(a) (b)

Picture 5.2.1 the oscillation of spring pendulums

Explanation:

In case of (a), the equation of motion is like below.
-m-il— _ﬂ-g-.l— ky—mg=10
And the general solution is as follows.

v=hy+Ae Foswt

Therefore, in case of a)(f—ﬂ2>0, a)oz—ﬂ2=0, a)(f—ﬂ2<0,

(71) When @, —°>0, y and ¥ are as follows.
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y=—Gly—h,)— Awe” “sinwt

(“)When @;—pB°=0, y and y are as follows.

y=h,+A1+5tle”

y=B[Ae” T —(y—h,)

(=) When @ — %<0, y and ¥ are as follows.

In case of (b), the elastic force of the whole mass—spring system

becomes—(K; +K,)X, so k=K, +k, and the equation of motion is like below.

mi}— S'i.l— ky—mg=10

Therefore, you can solve the cases of a)g —ﬂ2 >0, a)g —ﬂz =0, a)g —ﬂz <0 in

the same way by changing the modulus of elasticity from (a).
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5.2.2. ODE Solving Process

The way to solve linear secondary ODE is to calculate not the general solution but
the location and velocity per hour directly. The result of this solution can be compared

to the result of simulation during the general solution solving process. The equation of

motion about a mass—spring system is as follows.

me+ kr+br=10

Solve this formula by X.

This equation includes the secondary differential term of X, so solve it by dividing

it into two linear ODE.
ODE uses the 4" RK (Runge—Kutta) way, which has high accuracy and can calculate

the location and velocity with certain interval. If the equation of motion is divided into

two formulae, the result is like below.

|+ I T
Fit, wl=w=v

[=]]

fit,

£

When there is a small increase of change(h) which has constant interval, consider

the location X, and V, as the first formula above.
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When the change increases and reaches the middlez, the gradient of X, that is, V

can be calculated as below.

e

yf h & Vg
ve=hft+ 5.0+ 5.0+ 5)
o= Rhly=—a 1|
r,=hlwruv +

LI l:!.

Here, substitute the time interval dt for the small change h. Consequently, the

optimum solution'! for X and V is as follows.

[w]]
ba
=]

" When doing the simulation with formula 5.2.7, the values of a, b, ¢, d processes were
used all. The formula of RK, which is like formula 5.2.7, was used to calculate the

impulse in Chapter 4 Collisions.
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Exercise 5.2.2 ODE of a Spring Pendulum

Solve ODE about the motion of a spring pendulum in picture 5.2.1 which has

periodical damping.

Explanation:

The formula of RK used to solve ODE generally has the form'? as below.

.2.8)

[w]]

flh+1)l=flh)+ (R +2R, + 2K, + K4 )h/6 |

In oscillations, the solution of the velocity for the equation of motion was calculated

by formula (5.2.1), so formula (5.2.6) can be rewritten like below.

When RK is used to solve ODE and get the solution, apply the process of acquiring

formula (5.2.7) and solve it.

2 In Chapter 4 Collisions, this formula is expressed as the general form of RK and is
used to explain the process of calculating the impulse in Excel.
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5.2.3. Simulation Design

Simulation design begins with calculating the location and velocity using basic
physical quantities and planning the control variables and initial conditions of the real
experiments.

Let’s consider the simulation of the system which is composed of two pulling
springs and a cart. This situation is different from pushing—pulling spring situation, but
the theoretical modeling process of calculating the general solution is the same. Only
the variables which correspond to the initial conditions are different. The formulae of

location and velocity can be applicable in the same way.

ROV
|

Picture 5.2.2 process of simulation design of a mass—spring system: When there is
only one cart, the equations of motion can be made in case of slopes or spring

pendulums and can be designed in the same way.

Picture 5.2.3 is a scene in which the simulation is done in Excel. The experiment
like picture 5.2.1 was assumed, the initial conditions were designed, and the physical
quantities from the general solution solving process were used in the simulation. The
result values of time, location, velocity are recorded in row A, B and C of worksheet,
and the initial values are recorded from E4 to E15. From E17 to E32, the result values
per the time interval dtare recorded and the location, velocity and phase space are

drawn as a chart in the scene.



235

In “Sheet 1” scene, the simulation is operated by clicking [Start] button. Therefore,

X— X graph can be analyzed and compared to X—1t,X—t graphs, whose initial
conditions were various.

The designing process of simulations is the basis for making VBA original codes.
Based on this, simulations can be realized even if the oscillations are different from
picture 5.2.2.

This process is the basis for modeling physical developments with theories and
experiments. Therefore, you should learn this to operate high level physical

experiments.
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Picture 5.2.3 simulation scene of mass-spring system: simulation can be operated

by clicking [Start] button in worksheet.
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Just like picture 5.2.3, if variables are designed as initial conditions to be input in
the simulation scene, the result is as follows.

The modulus of elasticity of the system is the sum of each spring’s modulus of
elasticity and it should be calculated according to the experimental circumstances. In
the circumstance of picture 5.2.2, the modulus of elasticity of the system can be written
as K =k; +K,. The value of K should be determined according to the experimental

circumstances. The variables of initial conditions are in table 5.2.1 and 5.2.2.

wn
-

. The left end of spring 1

wn

-

: The right end of spring 2
: The length of spring 1
. The length of spring 2

. Initial amplitude

3 > -

: Mass of the cart

~
il

: The modulus of elasticity of spring 1
k2 : The modulus of elasticity of spring 2
K : The modulus of elasticity of the system consisted of spring 1, 2

b : Attenuation constant of the system

Table 5.2.1 the variables of initial conditions of the simulation®®

In the track, the related variables to calculate the changes in the cart’s location and
the spring’s length are as follows. These variables will be calculated within the Excel
VBA program. These are the variables that will be used to calculate the location of the
cart within Excel VBA program. Whether the location is wrong or not can be judged by
the results of these variables. If the initial conditions are wrong when doing the
simulation, the location of the cart will be wrong, too. So Excel VBA code should be

made to stop the experiment.

13 These variables are declared with the experimental circumstances such as picture
5.2.2. 1If the circumstances change, the designs of variables should be changed.
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|k : The ratio of length according to the modulus of elasticity
.+ The stretched length of spring 1

,+ The stretched length of spring 2

e, ' The stretched length of spring 1 when it is in equilibrium
€, The stretched length of spring 2 when it is in equilibrium
S: The location of the cart

X: The amplitude of the cart (displacement)

Table 5.2.2 internal variables which will be used in VBA code

Express the stretched lengths of spring X, and X, as the displacementX.

result is like below.

L]
i
|
m
+
]

By
)
M
b
|
]

The

According to the equation of motion, K =k; +K, and|klel| =|k2€‘2|. Therefore, the

system’s total length L is as follows.

L=5E_.g£
=£1_L:+El_p“
And,
'.-ii'lll
L=£1_LQ+E:_|1 IE'-
| K2
[ k| ; \
E.'=|#'1+1:II. 'L_EI_LQ'I
If I, is as follows,
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e,,€, are like below.

So the location of the cart S about the displacement X can be expressed like

below.

s=5+s8)=5+1L +z,)

5= |:a5-_.q-_33_:=551_|:£-2+f3_:

If the relationship between X, X,,€,, €, is used, the result is as follows.

As a result, the location of the cart is like below.

Il
|-.'|||—l

[es ]

[(Sp+ 8Sg)+ (L, — L)+ (ky — Ky )1, + 222

The displacement of the cart X can be calculated by applying the X solved from
the process of solving general solution or the secondary ordinary differential equation.
The formulae of simulation above can be applied within Excel VBA code and the
simulation scene such as picture 5.2.3 can be made.

This process of analyzing physical circumstances mathematically14 1s helpful to
understand and apply the physical theories better because it helps students search the

roles of each variable and study the physical theories concerning variables.

" This process is needed to the students who studies high level physical experiments
in AP(Advanced Placement) process.
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Exercise 5.2.3 Simulation design of a spring pendulum
Design the simulation of a spring pendulum which has periodic damping just like

picture 5.2.1.

Explanation:

Picture 5.2.4 is a scene which includes the graph about the location, velocity and

phase space of the spring pendulum.
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Picture 5.2.4 simulation scene of a spring: the simulation will be operated by

clicking [Start] button in “Sheet 1”.
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The simulation scene explained by the general solution of the equation of motion is
as picture 5.2.4. The location and velocity of the spring pendulum can be designed as a
simulation by using the formulae of exercise 5.2.1 or 5.2.2. Exercise 5.2.1 gets the
formulae of location and velocity by the solution of the equation of motion, so it can

make Excel VBA code' more easily than RK of exercise 5.2.2.

5.2.4 Simulation Making

We have learned the process of designing simulations. Based on these designs, let’s
learn how to realize simulations such as picture 5.2.216, which deals with the modeling
of one—dimensional harmonic oscillator with Excel VBA program. According to the
curriculum, this simulation making process can be omitted.

Picture 5.2.5 is the scene of simulation design. Set up the cell area for data
recording as (a) in worksheet. (b) is the cell area for initial conditions, (d) and (e) are
the cell areas for the results which will be calculated at the interval of dt, which was
set up as initial condition. (e) is the chart that will show the graph which is drawn using
the result data of (a). Graphs can express X—t,X—t,X—X,E -t optionally. You can
make graphs by using 2}E R} AL,

After designing the cell areas and making needed charts, you should make

simulation start button by using [Order] button of [Control Tool Box].

> More detailed information is in the Excel VBA original code, which is the supplement
of this book.

6 Once made, simulations can be used by anyone so that they can be applied to
simulations of oscillations using Excel workbook files which store simulation sheets.
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Picture 5.2.5 scene of simulation design about mass-spring system: In the scene,
(a) is the cell for the result data of simulations, (b) is the cell for initial conditions,
(c) is the cell for the result value of simulations, and (d) and (e) are the graph chart

. . 17
of simulations

After finishing the scene designing, you should make program codes by selecting
[Visual Basic Editor] of [Tooll. Picture 5.2.6 is the state of opening VBE window for
the first time. If you set up the order button as Start Button, the program code that will
be operated by clicking this button can be made in the sub procedure, that is, Private

Sub StartButton_Click().

" The original data series range of the chart is the data in column A, B, and C.
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Picture 5.2.6 VBE window for simulation code making: Project window, Property

Accelerator
Autnl nad

Falea

window and Code window (which can make programs) can be opened and the work

will be operated.

Make VBA code within the sub procedure of Private Sub StartButton_Click(). First,
make the declaration proce3518 of initial condition variables and the variables which will

¥ to the cells of worksheet.

be used within the program. Input initial conditions !
Cells(RowIndex,Columnlndex) has the property of substituting the values in the cells for
the variables. Substitute the values of input initial conditions for the initial condition
variables in the experimental circumstances and calculate the variables by the formula
gotten from simulation designing. As the process of realizing the result graph of
simulation, use For loop so that it can calculate at the interval “of dt the physical

21

state®’ of a system. Set up the loop so that whenever the integer variable | increases

one by one the time should flow as much asdt. And at the end of the For loop, the

'8 Initial condition variables and variables used in the program code are defined in the
process of simulation designing. Declare variables to fit the regulations of VBA (Visual
Basic Application) order system. Double is 64 beat numbers which show floating point
and Integer is integer variables from -32,768 to 32,767.

Y You can use Cells property when inputting the initial conditions make within the cell
area of worksheet. If the cell’s location is changed in the scene design, modify the value
of column and row in Cells property.

20 In VBA program, the results of simulations will be shown at the worksheet of Excel
at the interval of the established time. Here, it is the interval realized simulatedly in
ODE, so it is different from the actual computer time. Because there are limits in the
speed of VBA and limits in the exactitude of software-timed loop.

2l Qubstitute the initial location and velocity of the cart and calculate the angular
frequency of the system. Calculate the initial setting value to get the displacement and
the stretched length of the spring and the location of the cart.
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simulation should finish when it reaches the established time. Finally, calculate the
location, velocity and energy by the formula of physical quantity which is calculated by
the general solution of the equation of motion. Then calculate the location of the cart in
the track®’. The analysis results of the location, velocity and energy which will be used
as the data of graphs should be recorded in the cell areas of worksheet.

Picture 5.2.7 is the part of the original codes which were made like this. After
establishing VBA codes® like this, the simulation can begin by clicking the order button
StartButton.
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Picture 5.2.7 a part of VBA code making of simulations

%2 Calculate the value by the formula which fits the conditions of simulation. The
formula of the simulation here is the formula of general solution which has periodic
damped oscillation. Use this formula in For loop, which should be operated per the time
interval dt.

3 The established VBA code is stored automatically when storing Excel workbook.
When opening the stored work book, the warning window asking macro security. So,
VBA code can be operated after choosing Macro Including.

2 The original VBA code can be downloaded and read at the site introduced in the
supplement.
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5.2.5 Simulation Conducting

Using simulations above, let’s make charts concerning location, velocity, phase and
energy by changing the initial conditions and check out the context using exercises.
Input the initial conditions and attenuation constant and conduct simulations. Through

the simulations, real experiment situations can be predicted and explained within the

range of measurement error.

Exercise 5.2.4: Simulation of mass—spring system

The graph about the phase and energy of strong damping can be calculated by using

the simulation of mass—spring system.

Solution:

Picture 5.2.8 is the result of the simulation when the attenuation constants are
b=0.326, b=2.283. Below is the initial conditions used in the simulation. Simulations can

be conducted by changing these conditions.

Left end Sy, 0.1
Right end Sy 1.1
Spring length L; 0.2
Spring length Ly 0.2
A 0.2

m 0.509

K; 4.6263

Ky 4.6263

Table 5.2.3 Initial conditions used in the simulation
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Picture 5.2.8 phase spaces of strong damping and weak damping

Like this, by changing the attenuation constants, the graph of strong damping can

be made. The attenuation constant can be different according to the situations.

Exercise 5.2.5: The energy graph of a damped oscillation system

Conduct the simulation of spring pendulum and make (1) the graph of potential

energy and total energy, (2) the potential graph of the system, (3) dE/dt graph, in case

of no damping and weak damping.
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Picture 5.2.9 is the graph of potential energy and total energy according to time. At
the peak of potential energy, the curve of total energy meets it. That is, it shows that

total energy of the system is the same as the maximum of potential energy.

E3 Microsoft Excel - ®1Z 2% - 5,2 IO AE (243 FEH - M|F] 5.5

] mEE BEE) BN ZEl M0 T HOED S ESH) gbEEdE) -8 x
g =S -9 R EEEEE W% o @0 .
MET - F
- D e [ F [ & [ Hw | o [ J [ kK |§
17 |MZHtis) 4 0oz 1 002
18 | AMZ 2|F] 5 (m) 0.55257
19 [®2 217 5 (m) 064687 b=0
20 |sHHE0 v (mi 018313 ¢ L3
21 —F (f=
22 |wimj 0. 0057 EEII;E)UB)
23 |vimis) -0, 023 V(D-Dlns)
24 |a(m/st) 0. 08307 — (b=,
25 |F (N/m) 0.00345 001 { ool
26 |E 0.00015
27T 9, 7E-05
28 |v 5. 4E-05
29 |-dE/sdt -0, 0002
30 |f, 1,29758
31 |fq 1, 29406 b=0,08
2_.2
g% wy R BE. 11 ; ;
=4 0 as 1 15 2 25 E]
35 t
1= :
4 4 » WP Sheetl / < | /]
=H| MM

Picture 5.2.9 Graph of potential energy (V) and total energy (E): Green E curve
shows when there is no damping, Red E curve is when there is damping(b=0.06).

Orange V curve is the potential energy graph when there is damping.

Picture 5.2.10 is the scene which adds dE/dt graph in the chart and expand25 the
time interval of picture 5.2.9 from O to 0.8 sec. Point a,b,c are when dE/dt, T, V are at
the valley, and point d, e, f are when dE/dt, V, E, T are at the peak. At the valley, there
are phase differences between a, b, and c. dE/dt, T and V shows the phase differences
because the loss of energy can be calculated by the function of velocity when the
damping occurs. Point d, e, f are all the same time, so E is at the maximum when V is at

the maximum, and T and dE/dt are zero.

% To enlarge and reduce the graph’s scales in Excel, change the minimum and
maximum of [X Scale] in [Axis Form]-[Scale] of the chart.
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In the state of oscillation, when there is damping, the energy generally changes as

time flows. This is shown in the phase space graph of location and velocity.
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Picture 5.2.10 graph of the system’s energy and dE/dt: a is the valley of dE/dt
graph, b is the peak of kinetic energy, c¢ is the valley of potential energy, d is the
peak of dE/dt, e is the peak of potential energy, and f is the valley of kinetic energy.

When there is no damping, the peaks of potential energy in picture 5.2.10 have
same heights. In picture 5.2.11, the curve of potential energy according to the cart’s
location shows the potential of a harmonic oscillator which shows bilateral symmetry
on X=0. When there is damping, the potential decreases every time interval dt and

later it becomes 0.
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In the graph of picture 5.2.10, total energy curve passes the peak of potential
energy, and there are phase differences between the valley of potential energy and the
peak of kinetic energy. This is the result of the simulation which shows the conversion

and loss of energy in the process of oscillation.
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Picture 5.2.11 graph of the system’s potential energy and time V-t

Exercise 5.2.6 Calculating the attenuation constant Q

With reference to the simulation design and codes of picture 5.2.3, conduct the
simulation which is about the motion of mass—spring system which has periodic damping,
and calculate the graph of the modified phase Xand X+ X and the attenuation constant

Q(quality factor).
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Solution:

The result of simulation is as below. This simulation is conducted with the modulus
of elasticity 22.895N/m, the attenuation constant 0.05913, the cart’s mass 0.5328kg and
the length of the spring 0.142m.

In the oscillation that has weak damping, the energy loss of the system can be

characterized as Q. Q can be calculated as below.

The result of simulation analyzing is as follows. This result can be compared to the

real experiment result. In the simulation, you can learn that @, ~ @, .

fo 1.043298
f1 1.043260
g N.0E5487
wy — 3 12.968017

59.0663832

Table 5.2.4 the result of simulation: natural frequency fo, damped frequency fl,

attenuation constant

In picture 5.1.12, (a) shows the motion of the spring® during the simulation. (b) is
the graph of the phase space which is modified?” as Xand X+ fX. The result graph of
the simulation can be compared with the graph of real experiment because it is the

physical model of theoretical prediction.

5 This is a computer simulation for the understanding of the oscillations.
27 Use Xand X + X graph instead of X—X graph.
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Picture 5.2.12 Simulation of periodic weak damping 28 b=0.05913, m=0.5318,
K=22.895

In 5.3 Experiment Analysis, the data analyzing and the result interpretation of the
oscillation will be introduced. The simulations and experiment analyses in chapter 5 can
be used as tailored educational materials according to the level of the students. The
mathematical methods and VBA codes used in the simulations will be helpful when

learning mathematical physics.

8 Simulations can be conducted by changing b value, which is the condition of damping.
The modulus of elasticity K is different according to the type and character of the
spring, so the K value of spring used in the real experiment should be used.
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D.3.

Experiment Analysis

In the experiments, unlike simulations, the initial conditions will be less. The
variables that should not be input are such as the length of the track or the spring.
These variables are needed in the simulation to calculate the cart’s location, but it can
be calculated directly by the motion sensor. Also, when the spring’s modulus of
elasticity or the mass of the system is unknown, the damped constant £, the angular
frequency @, and@,, the Q value and the custom formula about the system’s motion
can be calculated using the measured data of the cart’s location.

The theoretical equation of motion used in the experiment analysis is like formula
(5.1.8). The real experimental data can be expressed like formula (5.3.1), which

changes the curve of amplitude into the general form which has the intercept.

— 34

ry=de "+ 1)

on
o]

on
o]
|

x = gcos lw,t) = [Ae™ " + ] - cos (w,t) (
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When the measured data of the oscillation is acquired, the physical value about the
system’s motion can be calculated and the motion can be explained by analyzing the
curve of amplitude (which is the envelope) and the frequency in the graph of
displacement and time. The analysis of frequency, which is like formula (5.1.8), is to
calculate the angular frequency @ in the formula of the damping, and the curve of
amplitude is to execute the exponential curve fitting in the form of the equation of
motion, just like formula (5.1.8). The process to conduct these two is as follows. First,

let’s check out the experimental circumstance of the oscillation.

5.3.1. Experimental Circumstance

Picture 5.3.1 is the experimental circumstance of the oscillation using a pushing-
pulling spring and a cart. The setting of the motion sensor (a) and the spring (b) should
be like picture 5.3.2. The experiment can be designed differently by changing the
installation of the motion sensor so that it can sense the location of the cart according
to the circumstance of the oscillation such as the motion in the slope, motion using a

pulley, motion of a system using two springs and a spring pendulum.

Picture 5.3.1 experiment of a mass—spring system: Estimate the distance which the
cart moved by a motion sensor. The measured data is the location of the cart on the

track.
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(a) (b)

Picture 5.3.2 the way of installing the motion sensor and the spring: Like picture (a),
the motion sensor should be combined with the sensor bracket. The spring should

be sent up above the track so that it should not be dragged by reaching the track?.

Picture 5.3.3 is the scene of opening the worksheet “Sheetl” of Excel, which
collected the data in this experimental circumstance. When the motions sensor is
connected to channel A and data is collected in worksheet “Sheetl” of Excel, the time is
recorded in column B, and the location is recorded in column C. Many sheets can be
added in Excel workbook, so the experiment can be done repeatedly in the same
experimental circumstances and can be stored as one workbook file.

Although the circumstances are different, the experimental data can be collected in
the worksheet in this way, so the way of analyzing the amplitude and frequency can be
applied identically regardless of the experimental circumstances and the initial
conditions. For example, in case of different circumstances such as the oscillation of a
spring pendulum or the oscillation of a cart on the one dimensional track, the data

analyzing of the oscillation is identical.

29 If the spring is dragged, the irregular damping will occur with the friction of the track
and the periodic damped oscillation cannot be maintained. As in picture 5.3.2, the
instrument such as the support can be used.
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Picture 5.3.3 the result of collecting data concerning the oscillation of a cart in

Excel workbook®

As in picture 5.3.3, the scene design for experiment analysis using “Sheet 1” should
be drawn up in a new sheet named “Analysis”, like picture 5.3.4. From now, let’s find
out the way of drawing up the analysis sheet. According to the level of the curriculum,
this process can be omitted®’. The students in the high physical experimental level can
improve their ability of experiment analysis by conducting this process on their own.

The basic physical value to be analyzed is as table 5.3.1 below. Time, location,
velocity and energy are the physical values recorded in the cells of the worksheet per
the time interval dt . This analysis sheet can be used in various experimental

circumstances to analyze the experimental data.

% Regardless of the experimental circumstance, the data of time and location is
collected in column B and column C of worksheet “Sheet1”.

31 Once drawn up, the analysis sheet can be used to analyze the experiments of
oscillation. This sheet does not need to be drawn up by every student. Distribute to the
students before the experiment.



Time t’
Time t

Time dt
Time t,
Location S,
Peak n
Constant b
Constant Q
Constant r
Frequency f,
Frequency f1

Constant f
Value @f — f°

Displacement X,
Constant A
Constant C

Mass m’

255

the later time of the time section
time of experiment completion

estimating interval

the first time of the time section

location indicating the system’s equilibrium: the oscillation center of X
the number of the peak

damping resistance

Q-constant

time constant

natural frequency

damped frequency

damping constant

damping condition

amplitude of the system
modulus of the amplitude
intercept of the amplitude

mass of the oscillating system

Table 5.3.1 Physical values to be analyzed in the experimental circumstance of

oscillation

In table 5.3.1, time t' is the later value of the time section which should be

analyzedgz. In picture 5.3.4, the name of the sheet to be analyzed should be input in (a)

cell B1, the modulus of elasticity in (b) cell E4 and E5, and time t' in (¢) cell E7. For

instance, when the total experimental time is 50 seconds, if you want to analyze from O

to 35 seconds only, put number 35 into cell E7. If t' is O, data can be analyzed from the

first till the end of the time. In (b), when the modulus of elasticity K1 or K, is input,

the total modulus of elasticity ZK should be calculated in cell E6.

% 1In the real experiment, unlike the simulation, there may be the section in which the
damping constant itself changes according to the system’s circumstances. For example,
when the damping occurs enormously in the air, the damping of the amplitude can be
different according to the sections.
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Picture 5.3.4 the worksheet in which the experimental data of oscillation will be

analyzedSS

5.3.2. Analyzing Process — Damped Oscillation

Let’s draw up the analysis sheet. The analysis sheet calculates the peak of the
amplitude curve from the location data expressed in time and distance and then
calculates the custom modulus of the exponential curve of the amplitude. From the
value of the peak, the frequency can be calculated and the damped angular frequency
@, and @, can be calculated, too. Using the modulus of the amplitude curve, the curve
of the experimental data and the curve of the analysis result can be compared. Next is

the summary of the experimental data’s analysis process in the analysis sheet.

3 1f you write the sheet’s name in cell Bl and click [Experiment Analysis], the analysis
will be done automatically and the result will be recorded in the cells.
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a. Calculate the peak of the amplitude curve P, (X,t).

b. Calculate the location indicating the system’s equilibrium from valid peaks.
c. From the values of peaks, calculate the damped frequency f1-

d. Execute the exponential curve fitting of formula 5.3.1.

e. Calculate the damping constant £, the moduli of the curve A and C.
f. Execute the fine tuning to the moduli A and f.

g. Calculated various physical values about the system’s motions.

First, calculate the arrangement Pi(X,t) of the peak of the amplitude curve which is
the envelope of the motion graph. Picture 5.3.5 shows that the peak wvalues are

expressed in points (P).

3
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Picture 5.3.5 Analyzing process 1 — Calculating the peak of the amplitude curve:

Analyze the value of the peaks and calculate the damped frequency of the system.

Frequency f1 is calculated by acquiring the average value of time t; in the
arrangement of the peak values and using the angular frequency @, =27zf1. When
calculating Pi(X,t) mathematically, you should judge whether X, ;,X;,X;,; Increases or

decreases when the widths of the peak observation are three before and after the value
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of PI If you set up the observation widths as five levels, observe the wvalues
of Xi_o, Xigs Xis X1y Xisz -

Second, arrangement Pi(X,t) becomes the points which pass the formula of the
amplitude curve (5.3.1), so the moduli A, C and the damping constant f# can be

calculated by the exponential curve fitting. The result of the exponential curve fitting is

as picture 5.3.6.
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Picture 5.3.6 analyzing process 2 — Exponential curve fitting: From the arrangement
P.(X,t) which shows the peak values of the amplitude curve, calculate the moduli A,

C and the damping constant . The solid line in the graph is the formula of the

exponential fitting curve Ae 4+ C.

The modulus of formula (5.3.1) should be done fine tuning using GROWTH and
LINEST functions of Excel®. By the fine tuning, the formula of the exponential curve

fitting can be calculated more accurately within the error range. If the displacement of

3 The formula of the amplitude curve can be executed the simple exponential curve
fitting by GROWTH and LINEST functions only. In 5.3.2, there is the analyzing process
of the exponential curve fitting, which is the process of calculating the modulus of the
exponential curve directly before using GROWTH and LINEST functions. This explains
the mathematical analyzing process of physical experiments.
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the amplitude swings a lot within the error range, the importance of the fine tuning
should be emphasized for accurate experiment analysis. Picture 5.3.7 shows the results

of the case with fine tuning and without fine tuning on the graph.
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Picture 5.3.7 analyzing process 3 — fine tuning: This is the result of fine tuning for
A and f, which are the moduli of the exponential fitting curve that passes PI (X,t).
I:)i (X,t) is shown as points in the graph and it is the arrangement of the peak values

of the amplitude curve.

After the fine tuning, the formula made by the exponential curve fitting35 and the
angular frequency @ can be calculated. Then, using formula (5.3.2), the damped
oscillation curve from the experimental data and the curve from the analysis result can
be compared with picture 5.3.7. The mathematical process of the exponential curve
fitting is as follows. When the exponential curve fitting is applied like formula (5.3.1), if

B =—/ , the amplitude’s displacement X and velocity X is like below.

% About the exponential function X = Ae” +C , the moduli A, B and C can be calculated
directly by GROWTH function of Excel. Solve In(GROWTH(x-C))=Bt+In(A), C= | Xa—

GROWTH( [ X, 1) ]
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r=Ae ¥+ 0= AP+ O
r= A Beft

B can be calculated first from the formula of X which does not have constant C. If

B, is calculated from Xj and X;, the result is as follows.

i, ABT
T | Be™

=
&
[Wx]}
o]

In formula (5.3.3), when B is X; = X;,; andt; =t;,;, the result is like below,

i+l

| B2 ¥4 |
i Tieyp | Fip2—liig )
£ .:!: |'I. 'T_:—__J .Il
'-If_'__-lf_: I
[ttt | [t Tt
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And 1 is the number of the peak values. Constant B can be acquired by calculating
the average of B, values from formula (5.3.3).

Let’s assume constant A. Using X;,; andX;, the result is like below.
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The arrangement value Ai can be calculated like formula (5.3.4) and the average

of this value indicates constant A. After this, let’s assume constant C.

So, when the time to =0, C becomes like below.

o
Ca
on

(= Lo~ AEEI‘E =&~ A (

Lastly, let’s execute the fine tuning to constant A and B. When the exponent growth
prediction curve which passes P, (Xi ,ti)is expressed using GROWTH function of Excel,

the result is as follows.

GROWTH(z,— C)=A'e”

|" GROWTH (x; —C) |

1'1I _.—1'1 I

=3‘fli

So, if formula (5.3.6) is expressed like formula (5.3.7), which is the simple function
in the form of Y =bX +a and the gradient and intercept are calculated by LINEST

function of Excel, new fine tuned A’ and B'can be acquired.
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In[GROWTHI(z;— )] =Ind"+ B, (5.2.7)

If LINEST function is applied to the left side of formula (5.3.7) and the gradient and

intercept are calculated by INDEX function, the result is as follows.

V=IlnGROWTHI(z,— )]
E = INDEX(LINEST(¥).1)

A'= INDEX(LINEST(Vv).2)

The result of fine tuning improves the accuracy of analysis just like in picture 5.3.7.
Picture 6.3.8 is the graph that shows the result of analyzing process. The
experimental data contains the result of analysis and the analysis was done by taking

the displacement X from the beginning till the equilibrium state of the experiment.
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Picture 5.3.8 analysis result (1): The dotted line shows the curve of experimental

data and the solid line shows the curve of the analyzed data. They are overlapping.
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It the resistance of the system changes according to the initial conditions and
physical circumstances, the motion of the system will be different by section®, and the
moduli A, C and S will be changed. If you observe the phase pictures7, you can see the
width of damping change. Just like in picture 5.3.9, when a certain section of the data is

observed the width of damping gets narrower as time passes by.

Microsoft Excel - #lE £ - 5.3 &3 24 _ 24 A4t (2)

] mEE HEEE EAMW () M0y EXT OOED =W ES2H)

iz - Es A A EEEAHA W% 0 E
- 3

b | e [ f [ & | H [ 1 [ 4 [P K IF
3 . 2
4K 4.6263] 06 pxm) w Ae(-ph_8®
5 |k Be(-pt)_E
6 |zK 46269 L aum
7t 25 5=
g
9 [t ) 25
10 |dt b 0,05
11 [to b 145
12 |=0 b 1.5395
13 In b 14 _
14 |6 0020152087
15 |0 1056213548
16 |+ 1.93736231
17 |m 0.86EE54 724 n3
18 |n 0, 867653042 "
19 [g 0, 258052857
20 [o,® 5 29, 72225631 0.4
27 Jun 00345
22 |a 0, 079502434
23 |c 0014544708
24 m Y 0.155303007 %
25 L : L g
26 -0,15 -0 A, 0% 015
27
28
29
30
31
32 0 "
E=xa3 ')
44 v [\ Sheetl) =24 | ¢ Sl
ZH|

Picture 5.3.9 analysis result (2): When the damping resistance changes according to

the time, you can see that the damping width of the phase picture gets narrower.

% 1f the damping resistance is not constant and changes as time goes by, it is difficult
to analyze the experiment with only one damping constant. In this case, split the data by
the time section analyze the experiment.

%7 Phase picture is the graph that express the real experimental data X ,, with data X

and X which are analyzed by the exponential curve fitting. X Lap 1S recorded in

column B of “oscillation.xls” file, and X in column B.
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The real physical circumstances that have not been predicted or expressed until
now can be analyzed accurately by fine tuning VBA codes. These series of explanation
is about the mathematical methods of physical experimental analysis and if the analysis
function of VBA is not used, the experiment analysis can be executed by using the
analysis of physical experiment modeling which is explained in chapter 2.

VBA original code scene of picture 5.3.10 can be modified by choosing [Visual
Basic Editor] of [Tool] menu and opening Private Sub Analyzebutton_Click() sub
procedure whose order button is AnalyzeButton. The downloading site for this VBA

original code®® is introduced in the supplement of this book.

i AnalyzeButlon

h=10 j

Increasing = False

MBL (35 28 - »

For i =1 To n_x
cl = x_array(i - 1)
c2 = x-arrayEi) g il
H i3 €3 = g_array(i + 1
& ThisWorkbool o

g e = 0 And Abs{(c2 - c1) < x_uncertain And Abs(c3 - c2) _
-6 528 ¥ < x_uncertain And Abs{c3 - c1) < x_uncertain _
Ju | > Then &_.x = i - 2
If (c2 > c1) And {c3 > c2) Then
x-peakghg =c3 : 5
[ t_peak(h) = dt = (i + 1
| AnalyzeBut CommandBi v | licresstng = Trie

Az a2y | Elself {c2 < c1) And {c3 < ¢2) Then

If Increasing Then h = h + 1
(AnalyzeButl & Increasing = False
| = End If
False n_peak = h
False | Next i
&HB0000C - v|
Bl Chila 'l;‘_' P -perdndl | B o = ‘I = >

Picture 5.3.10 VBA window that has the experiment analysis codes™

% VBA original code is important for the students who study AP level physics or who
are major in physics. However, this is not essentially relevant to the oscillation
experiment, so it can be omitted.

39 15 you click AnalyzeButton, the data will be brought from the sheet and the result of
the analysis will be recorded in “Analysis” sheet.
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Exercise 5.3.1: The Factor That Affects the Damped Oscillation (1)

Analyze the motion when a spring that has the modulus of elasticity 4.62 hangs (1)
a ball with a radius of 0.02m (2) a balloon with a radius of 0.18.

(a) (b)
Picture 5.3.11 oscillation experiment of a spring pendulum with a radius of (a)

0.02m, (b) 0.18m

Set up the equation of motion and calculate the general solution for the spring
pendulum which has periodic damping, just like the oscillation of picture 5.3.11. (a) is
the case that the oscillation lasts for a long time because of the small damping, and (b)
is the case that the damping is big because e of the resistance in the air.

When the resistance from friction is bX, and the damping constant #=0b/2m, the

equation of motion for the spring pendulum is as follows.

ma+ B+ kr—mg=0 (5.3.8)

And the relationship between the gravity and elasticity for the mass M is like

below.
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F,=mg=—khy
And this can be rewritten as below when @; =Kk/m.

r+26r+wir—wih, =0 (5.3.9)

When the general solution which contains periodic damping is calculated with

formula (5.3.9), the result is as follows.

x=h,+ Ae” P coswt (5.3.10)
(a) (b)
b 0.0008483 0.02565222
Q 769.9 38.7
T 108.8 8.2
£ 1.1259657 0.7461450
fi 1.1259655 0.7460826
g 0.0045944 0.060E263
vl — g 50.05 21.98
g N.059 0.105
A 0.0588115 0.06562523
C 0.0513199
m 0.092 0.210

Table 5.3.2 results of the oscillation (a) and (b)

When analyzing the experiment, L1 + h1 of picture 5.3.11 should be 0 and calculate
the displacement in the center of the oscillation. The results of experiment (a) and (b) in
picture 5.3.11 are table 5.3.2. The result of analyzing (a)’s oscillation is picture 5.3.12,
and (b)’s oscillation is picture 5.3.13. When you observe the damping related constant Q,

S or b, you can see that the resistance is bigger in (b).
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In case of (a), the damping resistance is small, so in the X—1 graph of picture
5.3.12, you cannot discern whether the amplitude gets smaller or not by the damping,
but in case of (b), you can easily see that the amplitude gets smaller in the graph. Also,
in case of (b), when you observe the X+ ft graph, you can see that the width of the
amplitude’s decrease gets smaller as time goes by. The natural frequency of (a) fo is
1.1259657 but the damping frequency f; is 1.1259655 and Af = f; — f, =0.0000002,
so when the damping resistance is small, fo = fl. In the section where the damping is
big, (b) has shorter time constant r than (a). (a) has so small resistance that it shows

the graph similar to the free oscillation.
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Picture 5.3.12 graph of the experiment with the ball with a radius of 0.02m
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The experiment mass M’ is the result of adding parts of the oscillating spring’s
mass to the galls mass, and this can be calculated accurately when you know the spring
constant K .

In the displacement graph of picture 5.3.13, the curve of damping amplitude is
definitely curved. In the phase graph of displacement and velocity, the gap between
lines gets narrower as it enters from the outside to the inside. This result shows the

circumstance that has a big damping because of the air resistance’.
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Picture 5.3.13 result of the experiment with a balloon with a radius of 0.18m:

X—1,X—X graphs

10 The system is affected by the force directly proportional to the velocity caused by
the air resistance. Because the velocity of a balloon is snow, so add f =-bv and

predict and analyze the modeling.
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Exercise 5.3.2: The Factor That Affects the Damped Oscillation (2)

Analyze the amplitude graph of the damped motion when a magnet is attached to

the bottom of a cart.
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Picture 5.3.15 X—tx graph of the damped motion experiment when six magnets

are attached

1 When the cart moves, the changes in the magnetic field caused by the magnetic
generate the eddy current to the surface of the track. This current generates the
magnetic filed in the direction that disturbs the magnet’s motion, so it takes the role of
damping resistance for the cart’s motion.
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As the cart moves, it gets the damping resistance by the magnet, so this resistance
makes the damping constant bigger. When the magnets are attached 2, 4, and 6 for each
case, the amplitude graphs are like picture 5.3.16. In table 5.3.3, the moduli of the
amplitude curve are calculated and expressed from each graph. For example, when the
magnets are 6, the amplitude graph is X = 0.03675e %% _(0.00975. With the graph
and the table, you can see that the damping resistance for the cart gets bigger when the

number of the magnet increases.

B=2 B=4 B=6
g 0.32647 0.47157 0.89188
A 0.068b4 0.06322 0.03675
C -0.01112 -0.01472 -0.00875

Table 5.3.3 damping constants calculated from the oscillation of the cart that has

magnet
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Picture 5.3.16 amplitude graph of a cart that has damped motion because of

magnets: the graph using table 5.3.3
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5.3.3 Analyzing Process — Forced Oscillation

A

P

A

. @@MQ&

Picture 5.3.17 forced oscillation experiment using dynamic oscillator: (a) motion

sensor (b) dynamics oscillator (c) function generating device

Let’s conduct a forced oscillation experiment using dynamic oscillator just like
picture 5.3.17. When the range of n=a)/a)0 = f/f0 on the natural frequency @, is
bigger than 1 and smaller than 1, if you do the experiment which calculates the

amplitude A in the normal state per regular interval, you can analyze the experimental
data of A/AO on N and draw it as a graph. @ 1is the frequency forced by the function

generating device and @, is the natural frequency. Include the modulus of elasticity K,

the cart’s mass M and the additional mass M, and calculate @, =+/K/(M +m) *.

A0 is the P-P(peak to peak) displacement43 of the dynamic oscillator from the natural
frequency. When you cause the forced oscillation, the amplitude A should be

measured by a motion sensor. The amplitude A can be expressed by measuring

A(p — p) expressed in P-P displacement.

*2 The additional mass contains the adhesive tape, magnets and so on.
3 amplitude that indicates the length between the peak and the valley in a oscillation
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Cell Formula or Value

f Gl =Gh=G2

n GZ2 =Gh=(G

Alap— p) G3 =+ MAX(CL1O:C400)-MIMN(C 10:C400)
f,:, Gb =+ SORTIGE/(GT+ GE+G9))/(2+3.141592)

K GB Modulus of elasticity

M G7 Mass of cart

my G8 Mass1l

M- G9 Mass?2

Table 5.3.4 values and formula to be applied to the cells of worksheet in the forced

oscillation experiment

The experiment analysis can be done by applying these formulae. The detailed
values and formulae are in table 5.3.4. When calculating P-P amplitude, the formula
range44 to calculate the gab between the maximum and minimum values should exclude
the beginning and end data of column C*. This is done for eliminating the uncertainty of
data in the beginning and the end of the experiment. Picture 5.3.18 is the result of
applying the values of table 5.3.4 to the cells of worksheet and calculating P-P
amplitude of the forced oscillation in the sheets of n0.25, 0.5, 0.75, 0.9, 0.95, 0.975, 1,
1.025, 1.05, 1.1, 1.25, 1.5 and 1.75. The results of each sheet should be analyzed in

“Analysis” sheet.

' When the measuring interval is 0.05 second, data collecting time is within 20 second,
total number of data will be 400. When the data are 400, they will be recorded from C4
to C 403.

5 1n table 5.3.4, the formula range of A(p-p) was set up “C10:C400”,
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Picture 5.3.18 data collecting and experiment analysis for the forced oscillation

)46

experiment: Calculate P-P amplitude A(p-p in the worksheet that collected the

experiment data.

The amplitude A(p-p) calculated in the cell G3 is the gap between the maximum and
minimum values of the data collected in column C, so let’s check out how this value is
different with the average of P-P amplitude within the error range.

Picture 5.3.19 is the graph of normal state when the forced oscillation is caused
with frequency f+ 1.047Hz. According to the formula calculation of table 5.3.4, A(p-
p)=0.121m can be acquired. Calculate the gap between the average of peaks and
average of valleys by selecting peaks and valleys in the experimental data of picture
5.3.18. Compare this value with the value calculated with the maximum and minimum
values of the amplitude. Picture 5.3.19 is the worksheet of “Oscillation(Forced

Oscillation)” file to calculate P-P amplitude form the average of peaks and valleys. If

6 The calculating formula for P-P amplitude has been written in cell G3, so the result
can be acquired at the same time.
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you click [Experiment Analysis], the experimental data is brought from the sheet that
has written the name in cell B2, peaks and valleys are analyzed, and fLab 47, which is the

experimental frequency of the forced oscillation and A(p-p) are calculated.
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Picture 5.3.19 calculating P-P amplitude of forced oscillation: Calculate P-P

amplitude from the gap between the average of peaks and valleys

When the error range of the motion sensor is * 0.002m, within the error range, the
value calculated in picture 5.3.18 is the same as the value A(p—p)=0.12067 calculated in
picture 5.3.19. So in the forced oscillation experiment, when data is collected after the
cart enters in the normal state, if the error of P-P amplitude is small just like in picture
5.3.18, it is possible to calculate P-P amplitude with the maximum and minimum values
of the experimental data. However, if n is much smaller than 1 or much bigger than 1,
that is, if the forced oscillation amplitude is extremely small, the motion uncertainty of
the cart increases as in picture 5.3.10, so P-P amplitude should be calculated with the

gap of average values just like in picture 5.3.19.

" The experimental frequency f,_alb is different from the frequency f = nfo (which is

the frequency of dynamic oscillator) within the error range.
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Picture 5.3.20 experiment of a cart that has a big motion uncertainty482 In this case,

49

analyze A(p-p) with “Oscillation(Forced Oscillation).xls” file ™ just like picture

5.3.19.

Based on this result, let’s draw a graph with the ratio of P-P amplitude A/A0 and
the ratio of frequencyn = a)/a)o = f/f0 . They are expressed by the Forced Harmonic
Oscillator in a normal state. Picture 5.3.21 is the result of a forced oscillation caused by
a cart that has damped resistance because of a neodymium magnet. In this experiment,
when the number of the magnet increases, the Q-constant gets smaller and the peak of
the graph gets lower in the graph. Also, based on this result, formulae for physical

models can be set up and the prediction and analysis can be executed.

* The A(p-p) formula calculation of cell G3 is the same as the maximum(A_p) — the
minimum(A-v) of the amplitude.
9 The original VBA code of Oscillation(Forced Oscillation).xls file is in the supplement.
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Picture 5.3.21 graph of A/Ajand f/f; in a forced oscillation experiment of a cart

that has damped resistance caused by magnets

Exercise 5.3.3: The Transient State Expressed by Forced Harmonic

Oscillator

Let’s calculate the amplitude graph for the early section in which FHO is in the

transient state. In this state, the changing shapes of the amplitude are various. As below,

let’s find out the amplitude graph of early state in various experimental circumstances.
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Picture 5.3.23 experiment graph of a cart’s oscillation when Q=27, n=0.975"!

' mass m=0.525kg, modulus of elasticity K=22.895N/m, f=0.998Hz, {0=1.051Hz, A(p-

p)=0.132m

°l mass m=0.525kg, modulus of elasticity K=22.895N/m, f=1.025Hz, f0=1.051Hz, A(p-

p)=0.229m
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Picture 5.3.2bexperiment graph of a cart’s oscillation when f=1.14Hz"

2 mass m=0.525kg, modulus of elasticity K=22.895N/m, f=1.047Hz, f0=1.047Hz, A(p-
p)=0.116m
% This is done with an arbitrary frequency when fO is unknown.
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Picture 5.3.25 shows that the two neighboring frequencies overlap each other in the

transient state. Picture 5.3.26 is the frequency spectrum graph drawn by analyzing the

oscillation of a cart. In this graph, the overlapped frequencies in the transient state just

like the two peaks can be calculated by analyzing FFT amplitude Spectrum54.
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Picture 5.3.26 amplitude spectrum analysis within the frequency range in the
experiment of picture 5.3.25: calculating two overlapping frequencies in forced

frequency f=1.14Hz

Exercise 5.3.4: Graph of Frequency and Amplitude for the Forced Oscillation

Experiment

IN the forced oscillation, when the outer force and mass is constant, let’s draw the

graph of amplitude A/A0 and frequency f/f0 that change according to the damping

constant f. Table 5.3.5 is the result of the experiment in which a cart with

a mass of

0.525kg executes forced oscillation by a constant force caused by the dynamic

oscillator.

> Excel VBA original code to analyze FFT amplitude spectrum within the freq
range is introduced in detail in chapter 2 and the supplement.

uency
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Damping ntfi=1 2 4

fo 1.047 1.043 1.037

A, N.008 N.008 Nn.00g
0.2 1.376 1.376 1.250
0.5 780 1.500 1.376
0.7b 2.600 2.500 2000
0.9 5.260 4.875 3.625
0.956 8.875 B8.875 4.376
N.975 12.780 8.125 1.626
n= 1.0 15.126 8.376 1.626
1.025 11.000 7.625 4.376
1.0B 7.625 B.125 4.1256
1.1 4.6256 4.260 3.376
1.26 2.1256 2.125 1.876
1.5 1.000 1.125 1.146
1.76 0.876 0.876 N0.8756

Table 5.3.5 results of forced oscillation experiment according to the damping

constant

Picture 5.3.27 is the graph of amplitude A/A, and frequency f/f, drawn by the
result of table 5.3.5. The amplitude A0 caused by the dynamic oscillator’s force™ is
0.08m. The neodymium magnet is used as a damping resistance and this is the result
of the experiment when the number of the magnet is 1, 2, and 4. As the magnets
increase, the damping resistance increases, the height of the amplitude’s peak gets
lower and the sharp shape gets smoother. We can guess by the experiment analysis
that the reason why the height and shape of the peak get changed is because of the size

of damping resistance.

% p-p amplitude should be measured with no devices attached to the dynamic oscillator,
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Picture 5.3.27 graph of amplitude A/A, and frequency f/f, in the forced
oscillation experiment: The graph is drawn by the result data of the experiment

when n=from 0.25 to 1.75.

Compare this graph with the graph drawn in the theory. By writing mathematical
formulae for physical models and analyzing the result data, compare and predict
theoretically56.

Experiment analysis process in chapter 5 is the analysis process using
“Oscillation.xls” file and this is for the simple analysis with [Experiment Analysis]
button to which VBA is applied. However, without this file, you can execute the
experiment in Sheetl and analyze the experiment by the data analysis based on
physical modeling in chapter 2. You can do custom educations according to the teaching

circumstances.

% Refer to data analysis based on physical modeling in chapter 2.
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Experiment: Free Oscillation

5.4.1. Experiment QOutline

Using the oscillation experiment of a spring pendulum which is close to the free
oscillation, let’s calculate the location, velocity and energy of the pendulum according to
time and analyze the frequency and damping constant so that we can find out the causes
which affect the damping of the pendulum. By this, the physical concepts concerning

free oscillations and damped oscillations can be understood.

Goal

Understanding characteristics of the spring pendulum’s oscillation

Required Equipments

Electronic scale 1
Motion sensor 1
Measuring tape 1
Springs (of different lengths) 3

Pendulums (50g) 5
Ball (of big volume and small volume) 1
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Picture 5.4.1 oscillation experiment of a spring pendulum: motions of a big ball and a
small ball that have different masses and volumes

5.4.2 Experiment A: Measuring a Spring’s Modulus of Elasticity

Experiment Prediction: the modulus of elasticity according to the spring’s length

1. Let’s measure the modulus of elasticity by cutting the 20cm spring in the ratio of five

to one.
a. What will be the shorter spring’s modulus of elasticity?
b. How will the modulus of elasticity change when the two same length springs

are put together?
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Experiment Process:

Picture 5.4.2 measuring the spring’s modulus of elasticity: this is the way of measuring
by load cell. Fix one end of the spring and observe the left end of the load cell on the
scale of the cm ruler and expand the spring to a certain length. Measure the size of the
force and calculate the modulus of elasticity.

1. Prepare a computer as in picture 5.4.2 and connect the load cell to channel A.

2. Open [Science Cube]-[Experiment] window in the menu of Excel worksheet. Cancel
[Data Recording in Cell] and click [Start Experiment], then the measured data will be
recorded in cell C2.

3. Read the value of cell C2 when the spring is expanded by the load cell to a certain
length.

4. Draw a graph about the force and the expanded length57 as in picture 5.4.3 and
calculate the modulus of elasticity in the trend line formula.

" Subtract the scale’s first value from all the scale values so that the origin of the graph
passes (0, 0).
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5. Put two springs together as a series and repeat 1, 2 to measure the modulus of
elasticity.

6. Calculate the modulus of elasticity by using various pendulums whose masses are
known, instead of the load cell®®.

EJ Microsoft Excel - A= 2= - 5.4 &3 (242 F3}) -

iH] DE DRE AW S0 ANOQ) EAD REQ W S8TH

i | G B‘-;J Al A AIS S S I e o [SE] i O Ih o
1 - & =SERIES(,Sheet1!$C$2:$C35,Sheet 1!1$B$2:$B$5, 1)
B | ¢ | o | E | F |1 6 | #H [ v [ 3 T ¥ T T M=

3 0.49 0,025 | 1S

5 147 0.07% y = 19064x + 00058

,,i%.. Y CIOIEf M@ MAQ),.,
5 ME BRY..

12 | { B HOIE(S),.,
3 s - ETEETOR

e - PR

F(N)

. i - s(m)

W« » v\ Sheetl (Sheet2 /Sheet3/ I« 4 ¥
Z=H|

Picture 5.4.3 Excel scene calculating a spring’s modulus of elasticity: Add a trend line to

the graph about the expanded length of the springs when pendulums are hung to them.

| €

Calculate the gradient ¥ with the trend line formula ¥ = kx+ b , and then the spring’s
modulus of elasticity can be acquired.

Experiment Explanation: Spring’s Modulus of Elasticity According to the Length

1. Fill out next table with the values of force and the expanded length.

% After drawing the graph of force (F = kx ) and displacement (¥ ) by increasing the number
of the pendulums hung to the spring, calculate the gradient. Then it is the modulus of
elasticity (¥ ).
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Springl Spring?2 Spring3
CIT1 CITl CITl
E ded
xpande Force(N) Force(N) Force(N)
Length(cm)
1
2
3
4

Table 5.4.1 experiment result: force and expanded length

2. Using table 5.4.1, draw a graph about the force and the expanded length as in picture
5.4.4. What is the modulus of elasticity calculated from the graph’s gradient?
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Picture 5.4.4 graph about the force and the expanded length (example)
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Spring 1’s modulus of elasticity N/m
Spring 2’s modulus of elasticity N/m
Spring 3’s modulus of elasticity N/m

3. From this result, explain how the modulus of elasticity becomes different according
to the lengths of springs.

5.4.3 Experiment B: Oscillation of a Spring Pendulum

Experiment Prediction: Period and Amplitude of Oscillation according to a Ball’s
Size and Mass

1. Oscillate a ball with a big radius and with a small radius.

a. Which one has faster period of oscillation?
b. Does the damping resistance of the air which the ball gets affect the period

or amplitude of the oscillation?

2. If the damping resistances are similar, how will the amplitude and the period be
different according to the mass hung to the spring?
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Experiment Process

1. Measure the masses of big ball and small ball with the electronic scale and the
circumference with the cm measuring tape.

Picture 5.4.5 mass measuring of a big ball and a small ball®

2. As in picture 5.4.1, prepare for measuring the oscillation by hanging the ball to the
spring.

a. Put the motion sensor on the floor so that it can measure the location of the
oscillating ball and connect the sensor and the computer.

b. Open “Oscillation.xls” file.

" As an example, the big ball's mass is 113.7g, circumference is 130cm, and the small ball's
mass is 280g, circumference is 43cm in this experiment. You can change the big ball’s mass
by injecting water.
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Picture 5.4.6 experiment with “Sheetl” of Excel®: If you click [Start Experiment]
button, data is collected within the sheet.

3. Open [Science Cube]-[Experiment Setting] window in worksheet menu and set the
measuring interval as 0.05 second, and the experiment time as 60 second.

4. Open [Science Cubel]-[Experiment] window in worksheet menu and click [Start
Experiment] button. After that, the experimental data will be collected within the

61
sheets™".

5. As in picture 5.4.7, when the ball is in a state of equilibrium, lift it up lightly to a
certain height. In this state, let the ball go lightly and oscillate it.

0 Use the prepared “Oscillation.xls” file. This file contains “Sheetl” and “Analysis” sheets.
You can download this file at www.sciencecube.com.

1 The supersonic wave perceiving part of the sensor should be placed under the ball. Move
the ball up and down slowly so that you can check out whether the data reflects the ball’s
location correctly. If it is incorrect, move the motion sensor a little bit.
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Picture 5.4.7 lifting up a ball to a certain height in the state of equilibrium

6. When the oscillation subsides, stop data collecting by clicking [Experiment]-[Stop
Experiment] button and analyze the result in “Analysis” sheet.

a. As in picture 5.4.8, in “Analysis” sheet of “Oscillation.xls” file®?, input
“Sheetl”, the name of the sheet in which the data is collected, in cell B2, and record
the modulus of elasticity in cell E.

b. If you click [Experiment Analysis] button in “Analysis” sheet, the data will
be analyzed automatically and the results will be shown in “Analysis” sheet.

%2 This file contains “Sheetl” and “Analysis’ sheets.
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Picture 5.4.8 analyzing the results in “Analysis” sheet of “Oscillation.xls” file: If you
click [Experiment Analysis] button, it will bring the experimental data of “Sheetl”
automatically, analyze it, and record the results.

Deepened Experiment: Experiments with Various Physical Circumstances

1. Repeat the process above and execute the experience with springs that have
different modulus of elasticity.

2. Execute the experiment to observe the period of the oscillation and the graph of
damping amplitude according to the mass, size and shape of the object63 hung to the
spring.

%3 Consider the case in which the damping occurs in complicated conditions according to the
object’s composition and form.
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3. Execute an oscillation experiment as in picture 5.4.9. Connect 50g pendulum to two
springs and oscillate it.

a. Measure the pendulum’s oscillating period using photogate64.

b. Remove one spring under the pendulum and oscillate it to compare the result.

Picture 5.4.9 oscillation with two springs: Oscillate the pendulum up and down so that it
blocks and unblocks the photogate.

4. In picture 5.4.9, use the motion sensor instead of photogate65 to measure the
displacement of the system and draw * 't graph.

% When photogate is connected to the computer and Excel workbook is open, it will be set
up automatically as strobo timing mode. In this mode, the motion period of a object can be
measured. Strobo timing mode is the general way that photogate measures the period of
“unblocked-blocked-open” with the moving object. Besides this, there is such way as gate
timing, which measures “open-blocked”.

% Because photogate cannot measure the displacement of the system, motion sensor should
be used. Find the way that the motion sensor can perceive the pendulum’s displacement and
execute the experiment design.
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Experiment Explanation: Characteristics of a Spring Pendulum’s Oscillation

1. Make the analysis result as a table.

Experiment 1 Experiment?2 Experiment3

Modulus of Elasticity(K)
Ball’s Volume

Ball’s Mass

Table 5.4.2 results of a big ball and a small ball’s oscillation

2. Explain the result in table 5.4.2.

a. What does the period of a spring pendulum is related to?

b. What is the reason of a spring pendulum’s delicate damping? Compare it with
the result of free oscillation.

3. Explain the graph of displacement and time(* 't ) and the graph of phase

space( )%

6 “Analysis” sheet contains* 1t | graph charts. If you click [Experiment Analysis]
button, the analyzed data will be recorded automatically in column A,B and C, and graphs will
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Picture 5.4.10 analyzing the graph of displacement and phase space: If you click
[Experiment Analysis] button in “Analysis”, the analyzed data of time, displacement, and

velocity will be recorded automatically in column A, B and C. And * 1£ | graphs
prepared in “Analysis” sheet will be drawn automatically.

4. Draw the energy relationship graph of the System67 and explain.

be drawn in the chart.
57 1f you click [Experiment Analysis] button in “Analysis” sheet, the data of total energy(E),

energy loss rate(dE/dt), potential energy(V) is recorded in column O,P and Q, and then
graphs are drawn in the prepared E-t, dE/dt),V-t charts. According to the experiment
conditions, the scale values of x axis (time) and y axis (energy) can be very different. To
draw graphs properly in the chart area, change the maximum and minimum values in [Axis
Form]-[Scale] and draw them.



a. Graph of total energy and time(E-t)

b. Graph of energy loss rate(dE/dt-t)

c. Graph of potential energy and time(V-t)
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Picture 5.4.11 analyzing the graph of energy (E) and time (t): if you click [Experiment
Analysis] in “Analysis” sheet, the data will be recorded in column O, P and Q.

5. When the ball hung to the spring oscillates as in the free oscillation, is free
frequency almost same as damping frequency? Explain this with the result.

Free Frequency

Damping Frequency
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Deepened Explanation:

1. As in picture 5.4.9, explain how the two spring system’s period of oscillation is
different from one spring system’s period of oscillation with the experiment result.

5.4.4 Experiment Questions

1. Explain how the damping can be different according to the relationship between the
volume and mass of the ball hung to the spring.

a. when the volume is consistent and the mass is different
b. when the mass is consistent and the volume is different

c. How is the air resistance related to the damping resistance?

2. As in picture 5.4.7, how does the height of the ball®® affect the result?

3. In the cases below, explain how the period and amplitude of the spring pendulum’s
oscillation changes.

a. when the same objects are hung to the springs that have different modulus of
elasticity
b. when objects that are same in shape and size and different in mass are hung to
the same springs

4. Explain the displacement, velocity and acceleration of the ball hung to the spring.
a. the velocity and acceleration when the displacement of the ball is at the
maximum toward + or — direction

b. the velocity and acceleration when the displacement of the ball is O

% This is the maximum displacement of the ball when it starts oscillating.
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Deepened Questions

1. In this experiment, execute the experiment analysis by measuring not the spring’s
modulus of elasticity but the mass of the ball®. How will the result be different? Explain
the differences. Using the result, calculate the spring’s modulus of elasticity.

2. Set the equation of motion’’ for the two spring system and using the experimental
data, calculate the solution for the frequency and displacement of the system in the way
of data analysis based on physical modeling and solution finding.

3. Analyze and explain the factors that affect the ball’s oscillation.

a. factual evidences analyzed through the experiment

b. physical values that can be explained through the evidences

c. various cases of oscillation predictable based on the experiment conditions

%9 To do this, you should modify VBA code in “Oscillation.xls” file. VBA original code can be
modified by opening VBE window.

 When the effect of the spring’s mass is neglected, the two spring’s total modulus of
elasticity can be expressed as ¥ = k1 + k2 and the solution for exercise 5.2.1 can be
applied.
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0.90.

Experiment: Damped Oscillation

5.5.1. Experiment Outline

With an oscillation experiment of a mass—spring system, let’s calculate the location,
velocity and energy of a mass according to time and analyze the frequency and damping
constant so that we can understand what causes the damping of the system. By this,
you can understand physical concepts according to the physical circumstances of the

damped oscillation.

Goal

Understanding characteristics of a mass—spring system’s damped oscillation

Required Equipments

Motion sensor 1
Spring (pushing 1, pulling 2)
Cart 1

Track 1

Pendulums (50g) 1
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5.5.2 Experiment A: Oscillation of a Mass—-Spring System (1)

*1401u)u'|
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Picture 5.5.1 oscillation experiment of a mass-—spring system: with the motion

sensor, measure the oscillation displacement of a cart on the horizontal track.

Experiment Prediction: Prediction of Experimental Evidences’' about the

Causes of Damped Oscillation

1. As in picture 5.5.1, consider the case when the air resistance is neglected in the

pushing-pulling spring- cart system’s oscillation.
a. What is the biggest cause of damping resistance?
b. How can it be proved by experiment?
c¢. What makes the oscillation period different?

d. How will the cart’s displacement change according to time?

I Based on the things from the theories, predict the experiment’s evidences in advance
and understand them with the real experiment.
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Experiment Process:

Picture 5.5.2 preparation of motion sensor and cart’

1. As in picture 5.5.2, put the cart on the track and set up the spring to the cart.

2. As in picture 5.5.2°s left one, set up the motion sensor upon the track so that it

can measure the cart’s location.

" The cart’s wheel has minute bearing construction and the area that is contacted with
track i1s constructed narrowly as the blade so it can reduce the friction resistance
caused by the contacted area.
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3. Connect the sensor and the computer and open “Oscillation.xls” file.

a. Open [Science Cube]-[Experiment Setting] window in worksheet menu and
set up the measuring interval as 0.05 second and the experiment time as 60

seconds.
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Picture 5.5.3 experiment with “Sheetl” of Excel: If you click [Start Experiment]

button, data will be collected within the sheet.

b. Open [Science Cube]-[Experiment] window in worksheet menu and click
[Start Experiment] button. If you click the button, as in the graph section (a)-(b)

of picture 5.5.4, the experimental data will be collected in the sheet”,

c. As in picture 5.5.1, in the state of equilibrium, move the cart slowly close to
or far from the motion sensor *. As in the graph section (b)-(c) of picture 5.5.4,

data will be collected.

™ Set up the supersonic wave perceiving part of the motion sensor toward the cart.
Move the motion sensor to check out whether the data reflects the cart’s location
accurately. If the measured value is inaccurate, move the motion sensor little by little.
™ The moving distance will be the maximum value of the oscillation’s amplitude.
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d. In the section (b)-(c), in which the cart has been moved, release the cart

gently and make it oscillate.
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Picture 5.5.4 starting experiment in Excel workbook: If you release the cart gently

at (d), it will start the oscillation.

4. When the oscillation fades, click [Stop Experiment] in [Experiment] window and

stop data collecting.

5. As in picture 5.5.5, in the “Analysis” sheet of “Oscillation.xls” file75, write the
data collected sheet’s name “Sheetl” into cell B2 and write the modulus of elasticity in
cell E4.

a. If you click [Experiment Analysis] button, the data will be analyzed

automatically, and the results will be shown in “Analysis” sheet.

™ This file has been explained in the experiment of a spring pendulum and it can be
used here, too. This file contains “Sheetl” and “Analysis” sheet.
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b. Explain and discuss the results analyzed in the cell area from E14 to E 24 of

“Analysis” sheet.
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Picture 5.5.5 analyzing the results in “Analysis” sheet of “Oscillation” sheet

Deepened Experiment: Experiments with Various Physical Circumstances

1. Repeat the process above and execute the experience with springs that have

different modulus of elasticity.

2. As in picture 5.5.6, change the cart’s mass and execute the experiment to

observe how the period of oscillation and the amplitude curve will change.
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Picture 5.5.6 experiment with different masses: the circumstance that the cart is

heavy because a 500g mass is put onto the cart

3. Picture 5.5.7 shows the oscillation of a cart with two pushing-pulling springs.

Execute an experiment to compare with the oscillation with one spring.

a. Set up a 15~20cm length poll to the cart so that the motion sensor can
perceive it. By executing the preliminary experiment, set up the motion sensor

on a stand at the best height of perceiving the cart’®

b. Execute the experiment in “Sheetl” of “Oscillation.xls” file and analyze the

result n “Analysis” sheet.

" Motion sensor operates in this way: it sends diffusing supersonic waves within 15°
range and perceives the signals reflecting from objects. In the circumstance in picture
5.5.7, it is difficult to measure the cart’s location accurately because the spring which is
on the left is so close to the motion sensor that it interferes. Therefore, you should set
up the sensor higher and set up a perceiving pole onto the cart.
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Picture 5.5.7 oscillation of a mass—spring system which consists of two springs

c. As the oscillation fades, stop data collecting and input the modulus of

elasticity K,, K; and analyze the results.
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Picture 5.5.8 experiment analysis of a system which consists of two springs: Input
the modulus of elasticity K, in cell E4, K, in E5 and click [Experiment Analysis]
button.
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Experiment Explanation: Damped Oscillation

1. Fill out next table with the results of experiment analysis.

Experiment 1  Experiment 2 Experiment 3

Modulus of Elasticity(K)

Cart’s mass

Table 5.5.1 result of cart’s oscillation

2. Explain the results in table 5.5.1. What is the factor that causes periodical

damping to the cart’s motion?

3. Analyze the graph of displacement and time(x —¢), displacement and phase

space(x —#)’" and explain them.

" «Oscillation.xls” file has been explained in the experiment of a spring pendulum and it
can be used here, too. “Analysis” sheet contains x — £, x — % graphs. If you click
[Experiment Analysis] button, the result analysis data will be recorded automatically in
column A, B and C, and the graphs will be drawn in the chart.
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Picture 5.5.9 analyzing graphs of displacement,

phase space:

If you click

[Experiment Analysis] button in “Analysis” sheet, the analyzed data of time,

displacement, and velocity will be recorded in column A, B, and C. And then, the

prepared (x — t), (x — %) graphs will be drawn automatically.

3. Are the cart’s natural frequency and damping frequency different greatly? Or

aren’t they? Explain it with the experiment results.

4. How are the time constanty, damping constant B different according to time? For

example, how are they different when the cart is heavy?

5. Analyze graphs of total energy and time(E-t), energy loss rate and time(dE/dt-t)

and potential energy and time(V-t)"® and explain them.

™ Refer to “Analysis” sheet of “Oscillation.xls” file, which has been explained already.
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Picture 5.5.10 analyzing the graph of energy (E) and time (t): If you click
[Experiment Analysis] button in “Analysis” sheet, the energy analysis data will be

recorded in column O, P and Q.

6. Is the cart shows the free oscillation as the oscillation of a spring pendulum? If
not, what is the factor that affects the cart’s damped oscillation? Explain it with the

experiment results.

Deepened Explanation:

1. As in picture 5.5.7, how is the oscillation period of a system with two springs

different from that of a system with one spring?

2. In the circumstance of picture 5.5.7, If both ends of two springs are expanded

and the length of springs gets even longer, how is the experiment result different?
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5.5.3 Experiment B: Oscillation of a Mass—-Spring System (2)

Picture 5.5.11 oscillation experiment of a mass-—-spring experiment: Measure the

cart’s displacement on the track with the motion sensor.

Experiment Prediction: Factors that Cause the Oscillation of a Pulling Spring

1. As in picture 5.5.11, predict what is related to the oscillation of the system with a

pulling spring and a cart”.

a. What is the reason that the expanded length of a spring in the state of

™ 1n picture 5.5.1, if you use a pulling spring instead of a pushing-pulling spring, you
cannot cause the oscillation. But, in case of the slope, you can cause the oscillation with
a pulling spring.
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equilibrium changes according to the gradient of the slope?

b. Concerned with the slope’s gradient, let’s consider whether the forces that

are related to the cart’s oscillation affect the period of oscillation.

Experiment Process:

1. As in picture 5.5.1, tilt the track in a certain angle and make it as a slope.

2. AS n picture 5.5.11, put a cart on the track, set up a spring and set up the motion

sensor on the track to measure the cart’s location.

3. Connect the sensor with the computer and open the “Oscillation.xls” file.

a. Open [Science Cube]-[Experiment Setting] window in worksheet menu and
set up the measuring interval as 0.05 second and the experiment time as 60

seconds.

b. As in picture 5.5.12, open [Science Cube]-[Experiment Setting] window in

worksheet menu and click [Start Experiment] button.
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rﬂ Microsoft Excel — 2 El@l@
HZE) BN S0 AAOQ SHD HOEHD W SSTH SEHE - & x

=3 AN AIESEAHW YD o |E| LD

Wi
B
9
1(1) z 0% s
w %
2 81610 X
w
s 4% HOlE |
15 v 401 HOIE I8 A A |
Lt a1s -
18 | 0
19 ’
20 | ! : =
WO WhShest (27 I« JN

Picture 5.5.12 experiment with “Sheetl” of Excel: If you click [Start Experiment]
button, the data will be collected into the sheet.

c. If you click [Start Experiment] button, as in the graph section (a)-(b) of

picture 5.5.13, the experimental data will be collected into the sheet.

d. From the state of equilibrium, move the cart slowly to the upper part of the
slope. The data will be collected as in the graph section (b)-(c) of picture

5.5.13.

e. From the (¢)-(d) section® of picture 5.5.13., which is the state that the cart

has been moved, release the cart gently and make it oscillate.

8 the state that the cart has been stopped because of holding it after moving it from the
state of equilibrium
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Picture 5.5.13 starting experiment in Excel workbook: If you release the cart gently

at (d), it will start oscillating.

4. As the oscillation fades, stop collecting data by clicking [Stop Experiment] of

[Science Cubel.

5. As in picture 5.5.14, in “Analysis” sheet of “Oscillation.xls” fi1e81, input “Sheetl in

81 This file has been used before in the Experiment A”, which was the motion of a
spring pendulum and the cart’s oscillation on the horizontal plane. This file can be used
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cell B2, which is the name of the sheet where the experimental data was collected, and

write the modulus of elasticity in cell E4.

a. If you click [Experiment Analysis], the data will be analyzed automatically

and the results will be shown in “Analysis” sheet.

b. Explain and discuss the analyzed results from cell area E4 to E24.
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Picture 5.5.14 analyzing the results in “analysis sheet of “Oscillation.xls” file

generally in the damped oscillation of a mass—spring system.
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Deepened Experiment: Experiments according to the Various Physical

Circumstance

1. As in picture 5.5.15, change the cart’s mass and observe how the period of
oscillation and the shape of damping amplitude curve change. Execute the experiment
to observe how the cart’s mass affects the oscillation on the slope and compare this

with the motion of a spring pendulum.

Picture 5.5.15 experiment with different mass: The cart is made heavy with a 500 g
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mass on it.

2. As in picture 5.5.16, execute the experiment with big gradient of the Slopegz. You
should see how the slope’s gradient affects the result and execute the experiment to

observe how the period of oscillation and the shape of damping amplitude curve change.

a. Connect the spring low but not touching the surface of the track®.

b. As the explanation of picture 5.5.3, execute the experiment in “Sheetl” of

“Oscillation.xls.” file and analyze the results in “Analysis” sheet.

c. Get other results by changing the slope’s gradient and analyze them.

d. Compare the results with the experiment of oscillation on the horizontal

surface and explain them.

82 Give attention to the experiment security. Note that the cart should not fall from the
track to the ground or crash into the motion sensor.

8 1f the spring is connected high above the track, the cart will get loose when the
slope’s gradient is big.



316

Picture 5.5.16 experiment with bit gradient84

3. In the circumstance same as picture 5.5.17, make the slope’s gradient constant,
connect a spring with different modulus of elasticity to the cart and execute the

experiment.

a. Connect springs that have different modulus of elasticity and lengths to the

cart.

b. As in the explanation of picture 5.5.13, execute the experiment in “Sheetl”

of “Oscillation.xls” file.

8 Observe how the results change according to the gradient.
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c. Because two springs are connected, input spring A;’s modulus of elasticity to

cell E4, and K7's to cell E5. In cell E6, write the formula “=E *Es/(E,+ E5)"°.

d. Analyze the result by clicking [Experiment Analysis] button in “Analysis”

sheet.

86

Picture 5.5.17 oscillation experiment of a cart that connects two springs in a row

% In “Analysis” sheet of “Oscillation.xls” file, cell E6 is set up as formula “= E4+ Es-to
add the value of A; and K. When the springs are connected in a row, this formula does
not fit, so you should modify it. E6 is used the initial value of the system’s modulus of
elasticity during the analysis process of Excel VBA when clicking [Experiment
Analysis].

86 Change the way of connecting springs variously and execute experiments.



318

M(=E3
(E] OME BEE A0 S0 A0 S0 QOHD W SSU(H) IEHiE) -8 x
G =S -8 - R A =E==W % - B
EB - & =+tC4+E5
A E c | D | E F G| H | | =
1 Sheet |Sheetl A1) 2 =
. us 2 } =7
3 |tis) wim) | w'(mfs) g
il Ky | uzr =
5 Ke =K
6 zK SAH K1 DILFK2 5 KIZHK2 2 01201 32| B
I t 0 {eyas a0z EXSIE O 24 HM2 202
g t i S a3 2A0| 27| ZAOS ABEL}
10 dt * 0
s R 2 * °
13 n b _
14 b u
15 0
16 T , v
Mo« » wml Sheetlh 24 I« %
2134 01(7h 4 EBH T W2

Picture 5.5.18 writing formula of the modulus of elasticity that fits the circumstance

of two springs in a row: Input formula “=E,*Es/(E,+ E5)” to E6.

e. Compare and explain how connecting one spring is different from connecting

. . 87
two springs in a row" .

8 When two springs are connected in a row, the total modulus of elasticity can be
calculated asi = f +Ri. Calculate the modulus of elasticity A with the experiment and
i

compare it with the value calculated by the theoretical formula.
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Experiment Explanation: Damped Oscillation

1. Fill out the table below with the results of experiment analysis.
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Experiment 1 Experiment 2 Experiment 3

Gradient of slope
Modulus of elasticity(K)

Mass of a cart

== = O

Table 5.5.2 results of a cart’s oscillation experiment

1. Explain the results in table 5.5.2.

2. How do the results below change according to the gradient of the slope?

a. Period of oscillation

b. Damping resistance
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3. How do the results below change according to the mass of the cart?

a. Period of oscillation

b. Damping resistance

4. Analyze and explain the graph of displacement and time (x — ¢} and displacement

and phase space (x — ).
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Picture 5.5.19 analyzing graphs of displacement, phase space88

5. How are the things below different according to the mass of the cart and the

gradient of the slope?

a. Time constant ¥

% If you click [Experiment Analysis] button in “Analysis” sheet of “Oscillation.xls” file,
the analyzed data of time, displacement and velocity will be recorded in column A, B
and C. The graph charts of (x —t} and (x — %), which has been prepared in “Analysis”
sheet, will be drawn automatically.
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b. Damping constant B

6. Analyze and explain the graphs of total energy and time (E-t), energy loss ratio

and time (dE/dt-t) and the potential energy and time (V-T)%.
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Picture 5.5.20 analyzing E-t graph: If you click [Experiment Analysis] button in

“Analysis” sheet, the energy analysis data will be recorded in column O, P and Q.

7. Draw and explain the graphs of velocity and time (¥ — £} and acceleration and

time (& — t).

% As in “Experiment A”, use “Oscillation.xls” file.
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Deepened Explanation:

1. As in picture 5.5.17, on a slope, how is the period of oscillation for the two-

springs—-in—a-row system different from that for one spring system?

2. Explain how the experiment circumstance for two springs connected in series on
the horizontal surface, which is as picture 5.5.7, is different from that for two springs

connected in a row on the slope, which is as picture 5.5.17.

5.5.4 Experiment Questions

1. Below are the factors concerned with the oscillation of a cart on the horizontal
surface as in picture 5.5.1. Based on the experiment results, explain whether each of

them is related to the cart’s oscillation or not.
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a. The cart’s mass is related to the frictional force between the cart’s wheels

and the track’s surface and it causes the damping resistance.

b. The cart’s period or oscillation is different according to the spring’s modulus

of elasticity and the cart’s mass.

c. The size of the cart’s damping resistance affects the period of oscillation and

this size can be expressed as damping constant.

2. Picture 5.5.21 is the result and graph of a cart’s oscillation on the horizontal
surface. Explain the displacement, velocity and acceleration on (a), (b), (c) and (d)

points ofx —t, ¥ — ¢ graphs.
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Picture 5.5.21 graph of a cart’s displacement and velocity: the blue curve is x —t¢

and the green curve is ¥ —t.

a. When do the displacement, velocity and acceleration become O each?

b. In + or -, when is the velocity at the maximum? How about the

displacement?

. .90 .
c. In + or —, when is the acceleration™ at the maximum?

d. From i —t graph raw the acceleration and time graph i —t. With this graph,
explain the force that affects the oscillating cart. Is this force constant? Or is it

not?

% You can see in the graph that the acceleration is not constant.
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3. Picture 5.5.22 is the result and graph of a cart’s oscillation on the horizontal
surface. In graphs of E — &, dE/dt —t, explain the energy and the cart’s motion state on

(a) and (b) points.
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Picture 5.5.22 graph of a cart’s energy relationship: the blue curve is £ —t, and the

grey curve is dE/dt—t.

a. the energy and motion state on point (a) of E — &, dE/dt —t graph

b. the energy and motion state on point (b) of E — &, dE/dt —t graph



328

c. the energy and motion state on point (¢) of E — & dE/dt —t graph

4. Picture 5.5.23 is the phase space graph of x—2x%, which analyzes the result,
displacement and the velocity of a cart’s oscillation on the horizontal surface with

exponential curve fitting. Explain the things below.
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Picture 5.5.23 x — 3 graph of a cart’s displacement and Velocity91

a. the cart’s motion state on points (a) and (b) of x — % graph

! The scales of x and # are expanded to see parts of the whole motion section.
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b. (¢) and (d), which represent the displacement’s interval Ax, are the same

sizes on the graph. What does this fact indicate?

5. Think about how to make the cart’s damping resistance bigger on the horizontal
surface. What should be done to make critical damping motion? Plan and execute an

experiment for this.

6. The motion of a galvanometer’s needle 92 is near to the critical damped
oscillation. Like this, find out examples that use the damped oscillation around us.

Explain the examples below.

a. various shock absorbers concerning to cars

b. motion of sliding or hinged doors that have shock absorbers

c. uses and principles of various shock absorbers concerning to everyday life

7. With theories and based on the experiment result, explain what factors affect the

oscillation period and damping of the cart on the slope.

%2 Galvanometer is the instrument that measures the electric current and it shows the
(+) and (=) direction of the electric current so the needle is at the middle when the
electric current is O.
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Deepened Questions

1. As in picture 5.5.11%

, set up the equation of motion for the oscillation on the
slope. Solve the displacement x and velocity ¥ and compare this with the real

experiment result.

Picture 5.5.24 oscillation of a cart on the slope: IN picture 5.5.11, the relationships

between forces are represented as vector.

Explanation:

When the cart is in equilibrium, concerning the frictional force with the slope, the

9 The force that affects the cart because of the gravity is different according to the
angle & between the track’s slope and the horizontal surface.
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force that affects the cart because of the gravity balances with the elasticity.

FE = F, — Fy = mgsind — ymgcosd )

With this force, when the spring expands as much as the displacement =, and it

balances with the elasticity, Fo=—ks,.

The relationships for the forces affecting this system are as below.

]
By
|
i
=
|
et
=
I
o
I
=
EJ 1
[=]]
—

So the equation of motion can be rewritten as below.

As in picture 5.5.24, the force affecting the cart is the elasticity and the force
concerning to the gravity. So the form of the equation of elasticity can become as
formula 5.3.8 and 5.3.9. As in formula 5.3.10 in which the spring’s expanded length by
the gravity is hy, in the circumstance of 5.5.21, the expanded length is s;, so the
solution about the displacement x can be solved as follows, which is the same form of
formula 5.3.10.

[w]]
(=]}
]

8; +Ae” “coswt (G,

&

In this process, the mass that the spring’s motion affects the system has not been

applied. However, if the damping constant is calculated with the real experiment, the
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omitted causes” will be expressed.

2. In picture 5.5.25, on the horizontal surface, a pulling spring is hanging at one
side of the cart and a pendulum at the other side of the cart using a pulley. Set up the
equation of motion for this experiment95 circumstance and solve the solution. Compare

and explain this with other experiments dealt with before.

iclence Cuba™f

——— L S S S S—_——_ .

Picture 5.5.25 oscillation of a cart with a pulling spring on the horizontal surface

Explanation:

9 The simulations dealt with before are simplified models that omit complex factors
concerning to the motion so there are gaps between the real experiment and the
theories. That’s why the system’s mass calculated with the experiment and the cart’s
mass are different. Theoretically, it’s too complicated to consider these small factors
and there will be difficulties dealing them with formula.

% To measure the cart’s motion, measure the cart’s location with the motion sensor.
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Picture 5.5.26 is for explaining the experiment circumstance of picture 5.5.25.
When the cart is in the equilibrium, the force that affects the cart by the gravity
balances with the elasticity. When neglecting other forces’ influences on the system,
the force that affects the cart with the pendulum is the total weight of the pendulum mg.

With this force, when the spring is expanded as much as the displacement =, and it

balances with the elasticity —ks,, it can be as below.

mg=|—ks,|=|—kh,

So the total force that affects this system is like below.

me+ Set+tkr—ma=10

This i1s the same form as formula 5.5.1, which was solved above.
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Picture 5.5.26 oscillation of a cart on the horizontal surface: the experiment

circumstance of picture 5.5.25

When you see picture 5.5.26, when the cart is expended as s;, the pendulum is
lowered as hy; and they balance with each other, so when the cart’s displacement
changes as much as x, the pendulum’s height will change as ¥. The location and
velocity can be solved with the processes dealt with above so you can try solving them,

too.
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D.6.

Experiment: Forced Vibration

5.6.1. Experiment Outline
Calculate frequency and amplitude near the resonance in the forced vibration experiment
of a mass—spring system consisted of a cart and a spring. Change the mass and the damping

of the system to understand the oscillation’s characteristics according to the physical
circumstances of the forced vibration.

Goal

Understanding the characteristics of a mass—spring system’s forced oscillation

Required Equipments

Motion sensor 1 Banana plug 2

Spring (pushing 1, pulling 2) Pendulum (500g) 1
Mechanical waver driver 1 Magnet (neodymium) 6
Sine function generator 1 Double stick tape 1

Cart 1 Holding tape 1

Track 1

Pendulums (50g) 1
Electronic scale (500g) 1
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5.6.2 Experiment: Forced Vibration of a Cart That Gets Damping Resistance

Picture 5.6.1 forced vibration experiment of a system in a damped oscillation: drive the
mechanical waver driver with the function generator and make the mass—spring system
in a forced vibration.

Experiment Prediction: Amplitude according to the Damping Resistance of a Cart

1. As in picture 5.6.1, consider the case when a cart and pulling—pushing spring system
vibrates forcedly by getting a consistent force of a sine function form with the
mechanical waver driver.

a. How does the resonance frequency change as the cart’s mass gets smaller?

b. How does the amplitude change as the damping resistance gets bigger?

A

(i)

c. Draw the angular frequency graph fag and the amplitude graph JXAU when the
cart’s damping resistance is 0.1, 0.5 and 0.7. How does the graph change
according to the damping resistance?

d. Guess how to find the resonance frequency when you do not know the cart’s mass
and the spring’s modulus of elasticity.
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Experiment Process A: Measuring the Amplitude of a Mechanical Waver Driver

stience Cubed

Picture 5.6.2 measuring the amplitude of a mechanical waver driver™”

1. Prepare the experiment as follows.

a. Measure the cart’s mass with the electronic scale. Measure the spring’s modulus
of elasticity in advance.

b. As in picture 5.6.2, put the cart on the track and set up the motion sensor on the
track so that it can measure the cart’s location.

c. Turn on the function generator and set up the amplitude button in the middle. Fix
this button with the holding tape.

d. As in picture 5.6.2, connect the cart’s right end with the mechanical waver driver
using double stick tape.

% With the double stick tape, attach the horizontal oscillation pole of the mechanical waver
driver to the cart.
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2. Connect the sensor and the computer and execute the experiment with “Oscillation
(Forced Vibration).xls” file.

a. Open [Science Cube]-[Experiment Setting] window in the worksheet and set up
the measuring interval as 0.05 second, and the experiment time as 20 seconds.

b. As in picture 5.6.3, in sheet “1” of the workbook, input the modulus of elasticity K,
the cart’s mass M and the additional mass m1 or m2 to cell G6, G7, G8 and G9.

El Microsoft Excel - FIZ 2 - 5.6 23 (ZHHE)
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Picture 5.6.3 experiment in “Oscillation (Forced Vibration).xls” of Excel: input the initial
conditions to cell G6, G7, G8 and G9 of sheet “1”

c. Open sheet “A0”. Read the frequency value automatically recorded” in cell G1
and turn the frequency button of function generator and adjust it to this value.

d. Connect (+) and (=) terminals of the function generator to the (+) and (-)
terminals of the mechanical waver driver using banana plugloo. After this, the cart
will start oscillating.

% This value is the natural frequency calculated by inputting the modulus of elastic K and
mass m, ml and m2 in sheet “1” and is recorded in cell G1 of sheet “17, “A0” and “FD”.
1% The banana plug is a cable that is used with the function generator.
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e. While the cart is oscillating, open [Science Cube]-[Experiment] window in the
worksheet and click the [Start Experiment] button. If you click it, the
experimental data will be collected within the sheet of workbook.
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Picture 5.6.4 experiment in “Oscillation (Forced Vibration).xls” of Excel: calculating the

P-P amplitude Ap of the mechanical waver driver in sheet “A0”!"!

f. As in picture 5.6.4, 20 seconds after the experiment’s beginning, stop the
experiment and read the calculated value in cell 3 of sheet “A0” as the P-P

amplitude of the mechanical waver driver Ag

g. This experiment process A is connected to the next experiment process B.

101 Calculate the P-P amplitude with the formula “=MAX($C$10:$C$400)-
MIN($c$10:$C$400)” which is recorded in cell G3.
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Experiment Process B: Measuring the Amplitude in the Frequency Area near the
Resonance

f<ience Cuba'd
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Picture 5.6.5 making forced vibration of a cart with a mechanical waver driver

1. Experiment process B follows experiment process A. After the setup is done as a, b,
and c of experiment process 1, as in picture 5.6.5, attach a spring to the right end of
the cart and connect the spring’s end to the mechanical waver driver.

2. Execute the experiment with “Oscillation (Forced Vibration).xls” file openedm.

a. Open [Science Cube]-[Experiment Setting] window in the worksheet and set up

the measuring interval as 0.05 second, and the experiment time as 20 seconds.

b. Open sheet “0.25”. Check out whether the value of n is recorded in cell G2 as
0.25'%,

192 Continue the experiment after experiment process A.
193 The value of n is recorded in advance in “Oscillation(Forced Vibration).xls” file.
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Read the value of frequency recorded automatically in cell G1 and turn the
frequency setting button of the function generator to adjust it to this value.

c. Connect (+) and (-) terminals of the function generator to the (+) and (-)
terminals of the mechanical waver driver using banana plug104. After this, the cart
will start oscillating. After it starts oscillating, when it passes the transient
state’® and reaches the normal state, continue the next step d.

A A NANAAA AN

m----

Picture 5.6.6 a cart forcedly vibrating near the resonance

1% The banana plug is a cable that is used with the function generator.

1% As in case of 0.975 and 1.025, when it is near the resonance, the P-P amplitude of the
cart becomes the maximum and the spring is no longer stretched or compressed. When n is
near 1 as n<<1 or n>>1, the unstable transient state might last for a long time from 10 to 30
seconds.

196 The picture shows that the cart is on the P-P amplitude location.
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d. While the cart is oscillating, open [Science Cube]-[Experiment] window in the
worksheet and click the [Start Experiment] button. If you click it, the
experimental data will be collected within the sheet of workbook.

B —+MAX(SC$ 10:$C$400)-MIN(SC$ 10:$C$400)
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Picture 5.6.7 experiment in “Oscillation (Forced Vibration).xls” of Excel: calculating P-P
amplitude in sheet “0.25”

f. After 20 seconds, stop experiment and check out P-P amplitude A(p—p) calculated
by formula and recorded in cell G3 of sheet “0.25”.

g. In case of n=0.5, 0.75, 0.9, 0.98, 1, 1.05, 1.1, 1.25, 1.5 and 1.75, move within the
prepared sheets “0.5”, “0.75”, “0.9”, “0.95”. «“1”, “1.05”, “1.1”, “1.25”, “1.5” and
“1.75”, and repeat the processes from b to f.

h. After finishing the experiment process g, open sheet “Analysis (2)” and check out

f ‘X A K
the graph of frequency fo and of amplitude Ap 107

197 The graph has been drawn already in sheet “Analysis (2)” of “Oscillation (Forced

Vibration).xls” file. When you finish the experiment as in picture 5.6.7, the graph is drawn
according to the values calculated by the formula in column A, B, and C.
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Picture 5.6.8 experiment in “Oscillation (Forced Vibration).xls” of Excel: check out the

f A
graph of frequency ‘Xfu and of amplitude ’XAU in sheet “Analysis (2)71%

Experiment Process C: Experiment with Different Damping Resistances

1. As in picture 5.6.9, attach a magnet to the bottom of a cart and make the damping
resistance bigger.

2. Execute the experiment process A and B by changing the number of the magnet as 1,

f A
2, and 4, and calculate the graph of frequency ‘Xfﬂ and of amplitude f"‘ﬂ .

3. Repeat the process 1 and 2 above by changing the cart’s mass. Process 1 and 2
include the process of continuing the process A and B.

198 Before the experiment, the values of column B and cell E1 of sheet “Analysis (2)” are all
“#DIV/0!”. After finishing the experiment from sheet 0.25 to 1.75, these values are calculated
as the results of the experiment and recorded in the corresponding cells. The graph is also
drawn by the values of column A and B.
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Picture 5.6.9 experiment with different damping resistances: make the damping

109

resistance bigger by attaching magnets to the cart

Deepened Experiment: The Reaction of a Cart in Transient State

1. Within the range of 1<n<3, Change the frequency of the cart and execute the
experiment.

110

a. Collect data for 120 seconds —~ when the cart is not moving.

b. Draw X—1 graph and explain it.

199 When attaching magnets, use the double stick tape and make sure the magnets don’t

touch the track. According to the number of the magnet the damping resistance changes, so
change the number of magnet as 1, 2, 4 or 6 and execute the experiment.

10 This is for the transient state, so you can change the measuring time longer or shorter
according to the circumstances.



Experiment Explanation: Forced Vibration

1. Write the experiment analysis results in the table.

fu
Aglp—p!
K
M

Table 5.6.1 result of a cart’s forced vibration experiment (1) :

. 111
experiment

initial conditions of

Damping Magnet ,(zi=1

25

0.b
i
0.9
0,95
0,975

n= 1.0
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Table 5.6.2 result of a cart’s forced vibration experiment (2): result of measuring P-P

amplitude A(p-p) per N= f/fo

111

magnets and so on.

m, and M, are the additional masses attached to the cart such as the double stick tape,
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2. Explain the result in table 5.6.2. When the damping resistance gets bigger, how does
the maximum amplitude of a cart change near the resonance (n=1)?

112

3. Express graph of h= f/f0 and P-P amplitude A(p—p) synthetically'*“ when the

damping magnet is 1, 2 and 4, and explain it.

4. Are the cart’s natural frequency ( fo) and resonant frequency ( fn) hugely different?

Or are they not? What makes the cart’s natural frequency change? Explain this with
the experiment results.

5. Does the cart’s phase A get near to F/K within the range of n<<1? Explain this.

6. Express graph of N = f/f0 and P-P amplitude A(p-p) synthetically when the cart’s

mass is different and explain it.

Deepened Explanation:

1. How is the cart’s motion in the transient state? How does the X—1t graph’s shape
change according to the value of f — f 1139

"2 When you finish the experiment in “Oscillation(Forced Vibration).xls” file, the synthetic

graph of n= f/f, and P-P amplitude A(p-p), which has been made already in sheet

“Analysis (2)”, will be drawn based upon the experiment results.

1 f_f =(n-1)f,
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5.6.3 Experiment Question

1. Picture 5.6.10 is the results of forced vibration by changing the damping resistance of
carts that have masses of 0.529kg and 0.532kg using a spring that has the modulus of
elasticity 22.895N/m. Based on the table 5.6.3, Explain the questions below about the
cart’s motion.

A/ A, of [=1.047 A/ A, of [=1.043
0.26 1375 1.37b
n= 1.0 15,125 B8.37b
1.76 0.875 0.87b

Table 5.6.3 result of a cart’s forced vibration experiment

£ Microsoft Excel - 2l

HI(E) (V) SR AAQ) EXD HOED W SSH) DSBS

=3 A A EEE NS E SO

‘_.

nip) 1 2 4
f0 1,047 | 1.043 | 1.037
40 0.008 | 0,008 | 0.008
n A/AD | A/AD | AJAD (a) n(g)=1
0,250 | 1.375  1.375  1.250 15 F
0,500 | 1,750 1,500 @ 1.375
0,750 | 2,500 2,500
0,900 | 5250 4,875 3,625
0,950 | 8,875 | 6.875 | 4.375
0.975 12,750
1.000 |15.125 | 8.375 | 4.625
1.025 [11,000 = 7.625 | 4.375
1,050 | 7.625 | 6.125 | 4.125
1,100 | 4.625 | 4,250 | 3.375
1.250 | 2.125 | 2125 | 1.875
1,500 | 1.000 | 1,125 | 1.125
1,750 | 0.875  0.875 | 0.875
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Picture 5.6.10 graph of n and A(p-p) according to the result of a cart’s forced vibration
experiment114

4 The Excel workbook file of picture 5.6.10 can be downloaded at www.sciencecube.com.
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a. According to the experiment result of table 5.6.3, the 0.003kg difference between
two cart’s masses causes the natural frequency’s 0.004Hz difference. Then does
the difference of mass cause the difference of the peaks’ heights in graphs of
picture 5.6.10? Or does it not?

b. In graph of picture 5.6.10, explain Q-constant and damping resistance. In (b) of
the graph, does the damping resistance decide the peak’s height?

c. Two carts’ A(p-p) is 1.375 when n=0.25. As n gets smaller, to which value does
this value get nearer? How big is the value?

d. Two carts’ A(p—p) is 0.875 when n=1.75. As n gets bigger, to which value does
this value get nearer? How big is the value?

2. To make the 0.525+ 0.0001kg cart’s damping resistance changed, a magnet of
0.0029 + 0.00001kg is used. When the number of magnet is changed, the cart’s mass

and the value of natural frequency are changed. Then, how will N = f/fO and P-P

amplitude A(p-p) change?

a. Does the effect of magnet’s damping resistance influence greatly to determine
the graph’s peak shape?

b. Does it influence greatly to determine the graph’s peak shape that the cart’s
mass changes little because of the magnet’s mass? Then, which part is it in the
picture 5.6.10 above?



